Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471022

RESUMO

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Sedimentos Geológicos/química , Poluentes Radioativos do Solo/química , Tennessee , Urânio/química
2.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453264

RESUMO

A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota , Urânio/efeitos adversos , Biodegradação Ambiental , Água Subterrânea/química , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/química , Oxirredução , Tennessee
3.
Environ Sci Technol ; 51(5): 2879-2889, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28112946

RESUMO

Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.


Assuntos
Bactérias/genética , Reatores Biológicos , Água Subterrânea/química , Nitritos , RNA Ribossômico 16S/genética
4.
Environ Sci Technol ; 49(20): 12105-11, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26389816

RESUMO

The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.


Assuntos
Compostos de Mercúrio/química , Mercúrio/química , Óxidos/química , Poluentes do Solo/química , Compostos de Manganês/química , Mercúrio/análise , Solo/química , Poluentes do Solo/análise , Solubilidade , Água/química , Espectroscopia por Absorção de Raios X
5.
Appl Environ Microbiol ; 80(6): 1810-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389927

RESUMO

The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.


Assuntos
Biodiversidade , Fungos/classificação , Fungos/metabolismo , Nitratos/metabolismo , Urânio/metabolismo , Microbiologia da Água , Poluentes da Água/metabolismo , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fungos/genética , Fungos/isolamento & purificação , Genes de RNAr , Dados de Sequência Molecular , Filogenia , Força Próton-Motriz , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
6.
Environ Sci Technol ; 47(11): 5787-93, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23641798

RESUMO

Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)3 and basaluminite precipitation reactions and a cation exchange selectivity coefficient K(Na\Al) of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH < 5 and with liebigite (Ca2UO2(CO3)3·10H2O) precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments.


Assuntos
Alumínio/análise , Sedimentos Geológicos/análise , Urânio/análise , Poluentes Radioativos da Água/química , Adsorção , Alumínio/química , Cálcio/química , Dióxido de Carbono/química , Carbonatos/química , Técnicas de Química Analítica/métodos , Sedimentos Geológicos/química , Água Subterrânea/análise , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Magnésio/química , Manganês/química , Modelos Químicos , Solubilidade , Tennessee , Urânio/química , Poluentes Radioativos da Água/análise
7.
Environ Sci Technol ; 47(7): 3209-17, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23397992

RESUMO

We conducted microcosm tests and biogeochemical modeling to study U(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe(III), U(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100-120 days in the EVO microcosms versus 10-20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface.


Assuntos
Bactérias/metabolismo , Elétrons , Emulsões/metabolismo , Modelos Biológicos , Óleos de Plantas/metabolismo , Urânio/isolamento & purificação , Acetatos/metabolismo , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Etanol/metabolismo , Hidrólise , Ferro/metabolismo , Ácido Oleico/metabolismo , Oxirredução , Sulfatos/metabolismo
8.
Environ Sci Technol ; 47(7): 3218-25, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23438796

RESUMO

We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.


Assuntos
Elétrons , Emulsões/metabolismo , Modelos Biológicos , Óleos de Plantas/metabolismo , Urânio/isolamento & purificação , Acetatos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Ácidos Graxos/metabolismo , Fermentação , Glicerol/metabolismo , Hidrólise , Ferro/metabolismo , Metano/biossíntese , Nitratos/metabolismo , Oxirredução , Sulfatos/metabolismo
9.
Environ Sci Technol ; 47(12): 6440-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23697787

RESUMO

A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.


Assuntos
Biodegradação Ambiental , Óleos de Plantas/química , Urânio/química , Verduras/química , Elétrons , Ferro/química , Manganês/química , Metano/química
10.
Environ Res ; 125: 20-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23809204

RESUMO

Historical use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0)l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0)g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0)l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400mg/kg. In the first core, Hg(0)l was distributed throughout the 3.2m depth, whereas the second core, from a location 12m away, contained Hg(0)l in a 0.3m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0)l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has remobilized the Hg.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Mercúrio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Mercúrio/química , Oxirredução , Espectrometria por Raios X , Espectrofotometria Atômica , Tennessee
11.
J Bacteriol ; 194(16): 4461-2, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22843592

RESUMO

We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo , Desnitrificação , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Nitratos/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Xanthomonadaceae/isolamento & purificação
12.
Appl Environ Microbiol ; 78(4): 1039-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22179233

RESUMO

The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.


Assuntos
Biota , Água Subterrânea/microbiologia , Poluentes Radioativos do Solo/metabolismo , Xanthomonadaceae/classificação , Xanthomonadaceae/isolamento & purificação , DNA Bacteriano/genética , Desnitrificação , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Metagenoma , Metagenômica/métodos , Nitrogênio/análise , Oxigênio/análise , RNA Bacteriano/genética , Resíduos Radioativos , Xanthomonadaceae/metabolismo
13.
Int J Syst Evol Microbiol ; 62(Pt 10): 2457-2462, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22140175

RESUMO

Bacterial strains 2APBS1(T) and 116-2 were isolated from the subsurface of a nuclear legacy waste site where the sediments are co-contaminated with large amounts of acids, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first member of the genus Rhodanobacter shown to be capable of complete denitrification. Cells of strain 2APBS1(T) and 116-2 were Gram-negative, non-spore-forming rods, 3-5 µm long and 0.25-0.5 µm in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth of 30 °C and pH 6.5; they were able to tolerate up to 2.0 % NaCl, although growth improved in its absence. Strains 2APBS1(T) and 116-2 contained fatty acid and quinone (ubiquinone-8; 100 %) profiles that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1(T) and 116-2 shared high 16S rRNA gene sequence similarity with Rhodanobacter thiooxydans LCS2(T) (>99 %), levels of DNA-DNA relatedness between these strains were substantially below the 70 % threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1(T) and 116-2 are considered to represent a single novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov. is proposed. The type strain is 2APBS1(T) ( = DSM 23569(T) = JCM 17641(T)).


Assuntos
Água Subterrânea/microbiologia , Filogenia , Xanthomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Nitratos , RNA Ribossômico 16S/genética , Resíduos Radioativos , Análise de Sequência de DNA , Ubiquinona/análise , Urânio , Poluição Química da Água , Contaminação Radioativa da Água , Xanthomonadaceae/genética , Xanthomonadaceae/isolamento & purificação
14.
W V Med J ; 108(3): 88-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792662

RESUMO

Episodic Migraine and Chronic Daily Headache are common disorders affecting millions of Americans, with a significantly disproportionate affect on women. West Virginia, due to its high obesity rates and lower socioeconomic status, is likely more heavily affected by these conditions. Prevention of episodic migraine goes well beyond the limited scope of medications and includes many areas which physicians need to be knowledgeable, including lifestyle modifications, trigger avoidance, and relaxation therapies. The prevention of progression of episodic headaches to chronic headaches includes a number of options, possibly most importantly the prevention of medication overuse from either over-the-counter or prescription medications. Despite limited evidence based pharmacologic options for the prevention of headaches, there are many safe and effective mechanisms in which physicians can help their patients limit the burden of migraine and prevent the progression toward chronic daily headache.


Assuntos
Transtornos da Cefaleia/prevenção & controle , Transtornos de Enxaqueca/prevenção & controle , Antagonistas Adrenérgicos beta/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Biorretroalimentação Psicológica , Terapia Cognitivo-Comportamental , GABAérgicos/uso terapêutico , Humanos , Estilo de Vida
15.
Appl Environ Microbiol ; 77(22): 8197-200, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21948831

RESUMO

Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.


Assuntos
Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Sedimentos Geológicos/microbiologia , Processos Heterotróficos , Nitratos/metabolismo , Urânio/metabolismo , Bactérias/classificação , Bactérias/genética , Biotransformação , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , Etanol/metabolismo , Compostos Férricos/metabolismo , Marcação por Isótopo/métodos , Oxirredução , Polimorfismo de Fragmento de Restrição
16.
Appl Environ Microbiol ; 77(17): 5955-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764967

RESUMO

Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Consórcios Microbianos , Urânio/metabolismo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo
17.
Appl Environ Microbiol ; 77(11): 3860-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498771

RESUMO

A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biodiversidade , Microbiologia do Solo , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Bactérias/metabolismo , Etanol/metabolismo , Compostos Férricos/metabolismo , Análise em Microsséries , Nitratos/metabolismo , Sulfatos/metabolismo , Estados Unidos
18.
Anal Chem ; 82(10): 4089-96, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20334385

RESUMO

Membrane-extraction ion mobility spectrometry (ME-IMS) has been developed for in situ sampling and analysis of trace chlorinated hydrocarbons in water in a single procedure. The sampling is configured so that aqueous contaminants permeate through a spiral hollow poly(dimethylsiloxane) (PDMS) membrane and are carried away by a vapor flow through the membrane tube. The extracted analyte flows into an atmospheric-pressure chemical-ionization (APCI) chamber and is analyzed in a specially made IMS analyzer. The PDMS membrane was found to effectively extract chlorinated hydrocarbon solvents from the liquid phase to vapor. The specialized IMS analyzer has measured resolutions of R = 33 and 41, respectively, for negative- and positive-modes and is capable of detecting aqueous tetrachloroethylene (PCE) and trichloroethylene (TCE) as low as 80 and 74 microg/L in the negative ion mode, respectively. The time-dependent characteristics of sampling and detection of TCE are both experimentally and theoretically studied for various concentrations, membrane lengths, and flow rates. These characteristics demonstrate that membrane-extraction IMS is feasible for the continuous monitoring of chlorinated hydrocarbons in water.

19.
Appl Environ Microbiol ; 76(10): 3244-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305024

RESUMO

In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Exposição Ambiental , Sedimentos Geológicos/microbiologia , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Sequência de Bases , Genes de RNAr/genética , Variação Genética , Genoma Bacteriano/genética , Genótipo , Metagenômica , Dados de Sequência Molecular , Nitratos/metabolismo , Nitratos/toxicidade , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Oxirredutases/genética , Fenótipo , Filogenia , Radioisótopos/toxicidade , Alinhamento de Sequência , Poluentes do Solo/toxicidade
20.
Environ Microbiol ; 11(10): 2611-26, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19624708

RESUMO

A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biodiversidade , Urânio/metabolismo , Microbiologia da Água , Bactérias/genética , Biodegradação Ambiental , DNA Bacteriano/análise , DNA Bacteriano/genética , Etanol/metabolismo , Genes Bacterianos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Oxigênio/metabolismo , Filogenia , Poluentes Radioativos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA