Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675277

RESUMO

The pathogenesis of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is associated with zinc deficiency. Previous studies show zinc supplementation improves steatosis and glucose metabolism, but its therapeutic effects in patients with established NAFLD remain unclear. We developed an in vivo model to characterize the effects of zinc supplementation on high-fat diet (HFD) induced NAFLD and hypothesized that the established NAFLD would be attenuated by zinc supplementation. Male C57BL/6J mice were fed a control diet or HFD for 12 weeks. Mice were then further grouped into normal and zinc-supplemented diets for 8 additional weeks. Body composition and glucose tolerance were determined before and after zinc supplementation. At euthanasia, plasma and liver tissue were collected for characterization and downstream analysis. As expected, 12 weeks of HFD resulted in reduced glucose clearance and altered body composition. Eight weeks of subsequent zinc supplementation did not alter glucose handling, plasma transaminases, steatosis, or hepatic gene expression. Results from our model suggest 8-week zinc supplementation cannot reverse established NAFLD. The HFD may have caused NAFLD disease progression beyond rescue by an 8-week period of zinc supplementation. Future studies will address these limitations and provide insights into zinc as a therapeutic agent for established NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Zinco/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Suplementos Nutricionais , Glucose/metabolismo , Modelos Animais de Doenças
2.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L449-L461, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984918

RESUMO

Increased senescence and expression of profibrotic genes in old lung fibroblasts contribute to disrepair responses. We reported that primary lung fibroblasts from old mice have lower expression and activity of the cystine transporter Slc7a11/xCT than cells from young mice, resulting in changes in both the intracellular and extracellular redox environments. This study examines the hypothesis that low Slc7a11 expression in old lung fibroblasts promotes senescence and profibrotic gene expression. The levels of mRNA and protein of Slc7a11, senescence markers, and profibrotic genes were measured in primary fibroblasts from the lungs of old (24 mo) and young (3 mo) mice. In addition, the effects of genetic and pharmacological manipulation of Slc7a11 were investigated. We found that decreased expression of Slc7a11 in old cells was associated with elevated markers of senescence (p21, p16, p53, and ß-galactosidase) and increased expression of profibrotic genes (Tgfb1, Smad3, Acta2, Fn1, Col1a1, and Col5a1). Silencing of Slc7a11 in young cells replicated the aging phenotype, whereas overexpression of Slc7a11 in old cells decreased expression of senescence and profibrotic genes. Young cells were induced to express the senescence and profibrotic phenotype by sulfasalazine, a Slc7a11 inhibitor, whereas treatment of old cells with sulforaphane, a Slc7a11 inducer, decreased senescence without affecting profibrotic genes. Like aging cells, idiopathic pulmonary fibrosis fibroblasts show decreased Slc7a11 expression and increased profibrotic markers. In short, old lung fibroblasts manifest a profibrotic and senescence phenotype that is modulated by genetic or pharmacological manipulation of Slc7a11.


Assuntos
Fibroblastos , Fibrose Pulmonar Idiopática , Animais , Senescência Celular/genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Fenótipo
3.
Alcohol Clin Exp Res ; 46(8): 1371-1383, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723023

RESUMO

BACKGROUND: Chronic heavy alcohol consumption is a major risk factor for the development of liver steatosis, fibrosis, and cirrhosis, but the mechanisms by which alcohol causes liver damage remain incompletely elucidated. This group has reported that α4 nicotinic acetylcholine receptors (α4 nAChRs) act as sensors for alcohol in lung cells. This study tested the hypothesis that α4 nAChRs mediate the effects of alcohol in the liver. METHODS: Expression of acetylcholine receptor subunits in mouse liver was determined by RNA sequencing (RNA-seq). α4 nAChR knockout (α4 KO) mice were generated in C57BL/6J mice by introducing a mutation encoding an early stop codon in exon 4 of Chrna4, the gene encoding the α4 subunit of the nAChR. The presence of the inactivating mutation was established by polymerase chain reaction and genomic sequencing, and the lack of α4 nAChR function was confirmed in primary fibroblasts isolated from the α4 KO mice. Wild-type (WT) and α4 KO mice were fed the Lieber-DeCarli diet (with 36% of calories from alcohol) or pair fed an isocaloric maltose-dextrin control diet for a 6-week period that included a ramping up phase of increasing dietary alcohol. RESULTS: Chrna4 was the most abundantly expressed nAChR subunit gene in mouse livers. After 6 weeks of alcohol exposure, WT mice had elevated serum transaminases and their livers showed increased fat accumulation, decreased Sirt1 protein levels, and accumulation of markers of oxidative stress and inflammation including Cyp2E1, Nos2, Sod1, Slc7a11, TNFα, and PAI1. All these responses to alcohol were either absent or significantly attenuated in α4 KO animals. CONCLUSION: Together, these observations support the conclusion that activation of α4 nAChRs by alcohol or one of its metabolites is one of the initial events promoting the accumulation of excess fat and expression of inflammatory mediators. Thus, α4 nAChRs may represent viable targets for intervention in chronic alcohol-related liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Etanol , Receptores Nicotínicos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Etanol/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
4.
Environ Toxicol ; 37(2): 245-255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34717031

RESUMO

Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.


Assuntos
Doenças Cardiovasculares , Cloreto de Vinil , Animais , Dieta Hiperlipídica , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Vinil/toxicidade
5.
Chem Res Toxicol ; 33(6): 1403-1417, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32274925

RESUMO

Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 µM, 0-72 h; or 0-5 µM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.


Assuntos
Arsenitos/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Ligação a RNA/metabolismo , Zinco/metabolismo , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas de Ligação a RNA/genética
6.
J Proteome Res ; 13(2): 547-554, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24328084

RESUMO

Arsenic is a widely distributed environmental component that is associated with a variety of cancer and non-cancer adverse health effects. Additional lifestyle factors, such as diet, contribute to the manifestation of disease. Recently, arsenic was found to increase inflammation and liver injury in a dietary model of fatty liver disease. The purpose of the present study was to investigate potential mechanisms of this diet-environment interaction via a high-throughput metabolomics approach. GC×GC-TOF MS was used to identify metabolites that were significantly increased or decreased in the livers of mice fed a Western diet (a diet high in fat and cholesterol) and co-exposed to arsenic-contaminated drinking water. The results showed that there are distinct hepatic metabolomic profiles associated with eating a high fat diet, drinking arsenic-contaminated water, and the combination of the two. Among the metabolites that were decreased when arsenic exposure was combined with a high fat diet were short-chain and medium-chain fatty acid metabolites and the anti-inflammatory amino acid, glycine. These results are consistent with the observed increase in inflammation and cell death in the livers of these mice and point to potentially novel mechanisms by which these metabolic pathways could be altered by arsenic in the context of diet-induced fatty liver disease.


Assuntos
Arsênio/toxicidade , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Metabolômica , Animais , Cromatografia Gasosa , Fígado Gorduroso/induzido quimicamente , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL
7.
Bioinformatics ; 29(14): 1786-92, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23665844

RESUMO

MOTIVATION: Due to the high complexity of metabolome, the comprehensive 2D gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) is considered as a powerful analytical platform for metabolomics study. However, the applications of GC×GC-TOF MS in metabolomics are not popular owing to the lack of bioinformatics system for data analysis. RESULTS: We developed a computational platform entitled metabolomics profiling pipeline (MetPP) for analysis of metabolomics data acquired on a GC×GC-TOF MS system. MetPP can process peak filtering and merging, retention index matching, peak list alignment, normalization, statistical significance tests and pattern recognition, using the peak lists deconvoluted from the instrument data as its input. The performance of MetPP software was tested with two sets of experimental data acquired in a spike-in experiment and a biomarker discovery experiment, respectively. MetPP not only correctly aligned the spiked-in metabolite standards from the experimental data, but also correctly recognized their concentration difference between sample groups. For analysis of the biomarker discovery data, 15 metabolites were recognized with significant concentration difference between the sample groups and these results agree with the literature results of histological analysis, demonstrating the effectiveness of applying MetPP software for disease biomarker discovery. AVAILABILITY: The source code of MetPP is available at http://metaopen.sourceforge.net CONTACT: xiang.zhang@louisville.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Software , Animais , Metaboloma , Camundongos
8.
Alcohol Clin Exp Res ; 38(4): 889-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24224954

RESUMO

BACKGROUND: Chronic alcohol exposure results in liver injury that is driven in part by inflammatory cytokines such as tumor necrosis factor-α (TNF). Hepatocytes are normally resistant to the cytotoxic effects of TNF, but they become sensitized to TNF by chronic alcohol exposure. Recently, we reported that the decrease in the ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) that occurs with alcoholic liver injury renders hepatocytes sensitive to TNF cytotoxicity. The purpose of this study was to determine whether inhibition of the transcription factor nuclear factor-kappaB (NF-κB) contributed to TNF-induced cell death in hepatocytes with high levels of SAH. METHODS: Primary human hepatocytes or HepG2 cells were pre-incubated with a combination of adenosine plus homocysteine to increase SAH levels. Following exposure to TNF, viability was determined by the MTT assay, and activation of the NF-κB pathway was assessed by measuring degradation of cytosolic IκB-α, phosphorylation and translocation of NF-κB to the nucleus, and expression of NF-κB-dependent genes. TNF-induced apoptotic signaling pathways were assessed by monitoring levels of the anti-apoptotic protein, A20, and cleavage products of the caspase-8 substrate, RIP1. RESULTS: NF-κB-mediated gene expression was inhibited in cells with high SAH, despite the fact that TNF-induced degradation of the cytoplasmic inhibitor IκB-α and accumulation of NF-κB in the nucleus persisted for much longer. In contrast to control cells, the NF-κB that accumulated in the nucleus of cells with high SAH levels was not phosphorylated at serine 536, a modification associated with activation of the transactivation potential of this transcription factor. The inhibition of transactivation by NF-κB resulted in lower mRNA and protein levels of the anti-apoptotic protein A20 and increased cleavage of RIP1. CONCLUSIONS: High SAH levels inhibited NF-κB-mediated gene expression and sensitized primary hepatocytes and HepG2 cells to the cytotoxic effects of TNF. It is likely that crosstalk with other transcription factors is perturbed under these conditions, resulting in still other changes in gene expression.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/biossíntese , S-Adenosil-Homocisteína/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Células Cultivadas , Citotoxinas/toxicidade , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos
9.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38291899

RESUMO

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Plásticos , Animais , Camundongos , Plásticos/metabolismo , Plásticos/farmacologia , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Aumento de Peso
10.
Food Chem Toxicol ; 180: 114024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666290

RESUMO

Chlordane is an organochlorine pesticide (OCP) that is environmentally persistent. Although exposures to OCPs including chlordane have been associated with elevated liver enzymes, current knowledge on OCPs' contribution to toxicant-associated steatotic liver disease (TASLD) and underlying sex-specific metabolic/endocrine disruption are still widely limited. Therefore, the objective of this study was to investigate the sex-dependent effects of chlordane in the context of TASLD. Age-matched male and female C57BL/6 mice were exposed to chlordane (20 mg/kg, one-time oral gavage) for two weeks. Female mice generally exhibited lower bodyfat content but more steatosis and hepatic lipid levels, consistent with increased hepatic mRNA levels of genes involved in lipid synthesis and uptake. Surprisingly, chlordane-exposed females demonstrated lower hepatic cholesterol levels. With regards to metabolic disruption, chlordane exposure decreased expression of genes involved in glycogen and glucose metabolism (Pklr, Gck), while chlordane-exposed females also exhibited decreased gene expression of HNF4A, an important regulator of liver identity and function. In terms of endocrine endpoints, chlordane augmented plasma testosterone levels in males. Furthermore, chlordane activated hepatic xenobiotic receptors, including the constitutive androstane receptor, in a sex-dependent manner. Overall, chlordane exposure led to altered hepatic energy metabolism, and potential chlordane-sex interactions regulated metabolic/endocrine disruption and receptor activation outcomes.


Assuntos
Fígado Gorduroso , Hidrocarbonetos Clorados , Masculino , Feminino , Camundongos , Animais , Clordano/toxicidade , Clordano/metabolismo , Camundongos Endogâmicos C57BL , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado , Substâncias Perigosas , Lipídeos , Metabolismo Energético
11.
Metabolites ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623845

RESUMO

Many pesticides have been identified as endocrine and metabolism-disrupting chemicals with hepatotoxic effects. However, data are limited for insecticides in the n-methyl carbamate class, including methomyl. Here, we investigate the liver and systemic metabolic effects of methomyl in a mouse model. We hypothesize that methomyl exposure will disrupt xenobiotic and intermediary metabolism and promote hepatic steatosis in mice. Male C57BL/6 mice were exposed daily to 0-5 mg/kg methomyl for 18 days. Mice were fed water and regular chow diet ad libitum. Metabolic phenotyping was performed, and tissue samples were collected. Effects were generally greatest at the highest methomyl dose, which induced Cyp1a2. Methomyl decreased whole body weight while the liver:body weight and testes:body weight ratios were increased. Hepatic steatosis increased while plasma LDL decreased. Fasting blood glucose and the glucose tolerance test area under the curve decreased along with hepatic glycogen stores. Methomyl, however, did not increase liver oxidative stress or injury. Collectively, these data demonstrate that methomyl disrupts hepatic xenobiotic and intermediary metabolism while increasing the testes:body weight ratio, suggesting that it may be an endocrine disrupting chemical. Besides methomyl's known action in cholinesterase inhibition, it may be involved in aryl hydrocarbon receptor activation. The potential impact of n-methyl carbamate insecticides on metabolic health and diseases, including toxicant-associated steatotic liver disease (TASLD), warrants further investigation.

12.
Eur J Pharm Biopharm ; 190: 81-93, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479065

RESUMO

The emergence of probiotics as an alternative and adjunct to antibiotic treatment for microbiological disturbances of the female genitourinary system requires innovative delivery platforms for vaginal applications. This study developed a new, rapid-dissolving form using electrospun polyethylene oxide (PEO) fibers for delivery of antibiotic metronidazole or probiotic Lactobacillus acidophilus, and performed evaluation in vitro and in vivo. Fibers did not generate overt pathophysiology or encourage Gardnerella growth in a mouse vaginal colonization model, inducing no alterations in vaginal mucosa at 24 hr post-administration. PEO-fibers incorporating metronidazole (100 µg MET/mg polymer) effectively prevented and treated Gardnerella infections (∼3- and 2.5-log reduction, respectively, 24 hr post treatment) when administered vaginally. Incorporation of live Lactobacillus acidophilus (107 CFU/mL) demonstrated viable probiotic delivery in vitro by PEO and polyvinyl alcohol (PVA) fibers to inhibit Gardnerella (108 CFU/mL) in bacterial co-cultures (9.9- and 7.0-log reduction, respectively, 24 hr post-inoculation), and in the presence of vaginal epithelial cells (6.9- and 8.0-log reduction, respectively, 16 hr post-inoculation). Administration of Lactobacillus acidophilus in PEO-fibers achieved vaginal colonization in mice similar to colonization observed with free Lactobacillus. acidophilus. These experiments provide proof-of-concept for rapid-dissolving electrospun fibers as a successful platform for intra-vaginal antibiotic or probiotic delivery.


Assuntos
Nanofibras , Probióticos , Feminino , Animais , Camundongos , Antibacterianos/uso terapêutico , Metronidazol , Resultado do Tratamento , Lactobacillus acidophilus/fisiologia
13.
J Biol Chem ; 286(38): 33669-77, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21832082

RESUMO

Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/enzimologia , Tiorredoxina Redutase 2/metabolismo , Animais , Auranofina/farmacologia , Dinitroclorobenzeno/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ensaios Enzimáticos , Glutationa/metabolismo , Cobaias , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução/efeitos dos fármacos , Peroxirredoxina III/metabolismo , Tiorredoxina Redutase 2/antagonistas & inibidores , Tiorredoxinas/metabolismo
14.
Biochim Biophys Acta ; 1812(5): 613-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21296661

RESUMO

Methionine metabolism is disrupted in patients with alcoholic liver disease, resulting in altered hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and other metabolites. The present study tested the hypothesis that reductive stress mediates the effects of ethanol on liver methionine metabolism. Isolated rat livers were perfused with ethanol or propanol to induce a reductive stress by increasing the NADH/NAD(+) ratio, and the concentrations of SAM and SAH in the liver tissue were determined by high-performance liquid chromatography. The increase in the NADH/NAD(+) ratio induced by ethanol or propanol was associated with a marked decrease in SAM and an increase in SAH liver content. 4-Methylpyrazole, an inhibitor the NAD(+)-dependent enzyme alcohol dehydrogenase, blocked the increase in the NADH/NAD(+) ratio and prevented the alterations in SAM and SAH. Similarly, co-infusion of pyruvate, which is metabolized by the NADH-dependent enzyme lactate dehydrogenase, restored the NADH/NAD(+) ratio and normalized SAM and SAH levels. The data establish an initial link between the effects of ethanol on the NADH/NAD(+) redox couple and the effects of ethanol on methionine metabolism in the liver.


Assuntos
Etanol/farmacologia , Fígado/efeitos dos fármacos , NAD/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , 1-Propanol/farmacologia , Animais , Anti-Infecciosos Locais/farmacologia , Fígado/metabolismo , Masculino , Oxirredução , Perfusão , Ratos , Ratos Sprague-Dawley
15.
Toxicol Appl Pharmacol ; 257(3): 356-64, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21983427

RESUMO

Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations.


Assuntos
Arsenitos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Compostos de Sódio/toxicidade , Animais , Arsenitos/administração & dosagem , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibrina/metabolismo , Inflamação/etiologia , Inflamação/fisiopatologia , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Fatores de Risco , Compostos de Sódio/administração & dosagem , Aumento de Peso
16.
Toxicol Rep ; 8: 718-723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889501

RESUMO

The effects of exposure to the environmental toxicant cadmium, in combination with obesity, on the metal content in mouse testis were evaluated. Starting in utero and continuing through to 10 or 24 weeks post-weaning, male mice were exposed to cadmium (0, 0.5 or 5 ppm), and fed either a low (LFD) or high fat diet (HFD) post-weaning. Testicular levels of cadmium and essential metals were determined 10 and 24 weeks post-weaning by ICP-MS. Similar to what has been previously observed in the liver, kidney, heart and brain, significant levels of cadmium accumulated in the testis under all exposure conditions. Additionally, HFD-fed animals accumulated more cadmium than did their LFD-treated counterparts. Both treatments affected essential metal homeostasis in the testis. These findings suggest that cadmium and obesity may compromise the reproductive potential in the male mouse by disrupting essential metal levels.

17.
Antioxidants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203453

RESUMO

(1) Background: One third of patients who receive cisplatin develop an acute kidney injury. We previously demonstrated the Na/H Exchange Regulatory Factor 1 (NHERF1) loss resulted in increased kidney enzyme activity of the pentose phosphate pathway and was associated with more severe cisplatin nephrotoxicity. We hypothesized that changes in proximal tubule biochemical pathways associated with NHERF1 loss alters renal metabolism of cisplatin or response to cisplatin, resulting in exacerbated nephrotoxicity. (2) Methods: 2-4 month-old male wild-type and NHERF1 knock out littermate mice were treated with either vehicle or cisplatin (20 mg/kg dose IP), with samples taken at either 4, 24, or 72 h. Kidney injury was determined by urinary neutrophil gelatinase-associated lipocalin and histology. Glutathione metabolites were measured by HPLC and genes involved in glutathione synthesis were measured by qPCR. Kidney handling of cisplatin was assessed by a kidney cortex measurement of γ-glutamyl transferase activity, Western blot for γ-glutamyl transferase and cysteine S-conjugate beta lyase, and ICP-MS for platinum content. (3) Results: At 24 h knock out kidneys show evidence of greater tubular injury after cisplatin and exhibit a decreased reduced/oxidized glutathione ratio under baseline conditions in comparison to wild-type. KO kidneys fail to show an increase in γ-glutamyl transferase activity and experience a more rapid decline in tissue platinum when compared to wild-type. (4) Conclusions: Knock out kidneys show evidence of greater oxidative stress than wild-type accompanied by a greater degree of early injury in response to cisplatin. NHERF1 loss has no effect on the initial accumulation of cisplatin in the kidney cortex but is associated with an altered redox status which may alter the activity of enzymes involved in cisplatin metabolism.

18.
J Nutr Biochem ; 84: 108431, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615368

RESUMO

Age, sex and diet are well-established risk factors for several diseases. In humans, each of these variables has been linked to differences in plasma redox potentials (Eh) of the glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox couples. Mice have been very useful for modeling human disease processes, but it is unknown if age, sex and diet affect redox couples in mice as they do in humans. The purpose of the present study was to examine the effects of these factors on plasma redox potentials in C57BL/6J mice. We found that age had no effect on either redox couple in either sex. Plasma Eh Cys/CySS and Eh GSH/GSSG were both more oxidized (more positive) in females than in males. A 24-hour fast negated the sex differences in both redox potentials by oxidizing both redox couples in male mice, while having no effect on Eh Cys/CySS and a smaller effect on Eh GSH/GSSG in female mice. A diet with excess sulfur amino acids reduced the plasma Eh Cys/CySS in females to a level comparable to that seen in male mice. Thus, sex-specific differences in plasma Eh Cys/CySS could be normalized by two different dietary interventions. Some of these findings are consistent with reported human studies, while others are not. Most strikingly, mice do not exhibit age-dependent oxidation of plasma redox potentials. Care must be taken when designing and interpreting mouse studies to investigate redox regulation in humans.


Assuntos
Cisteína/sangue , Cistina/sangue , Dissulfeto de Glutationa/sangue , Glutationa/sangue , Envelhecimento , Animais , Dieta , Jejum/sangue , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Oxirredução
19.
Oxid Med Cell Longev ; 2020: 2468986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587657

RESUMO

Slc7a11 is the key component of system Xc -, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.


Assuntos
Envelhecimento/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Cistina/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Pulmão/citologia , Animais , Senescência Celular , Feminino , Ontologia Genética , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Mapas de Interação de Proteínas
20.
Sci Rep ; 10(1): 2609, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042093

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA