RESUMO
Here, we investigate the impact of hypoxia on the hepatic response of glucocorticoid receptor (GR) to dexamethasone (DEX) in mice via RNA-sequencing. Hypoxia causes three types of reprogramming of GR: (i) much weaker induction of classical GR-responsive genes by DEX in hypoxia, (ii) a number of genes is induced by DEX specifically in hypoxia, and (iii) hypoxia induces a group of genes via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Transcriptional profiles are reflected by changed GR DNA-binding as measured by ChIP sequencing. The HPA axis is induced by hypothalamic HIF1α and HIF2α activation and leads to GR-dependent lipolysis and ketogenesis. Acute inflammation, induced by lipopolysaccharide, is prevented by DEX in normoxia but not during hypoxia, and this is attributed to HPA axis activation by hypoxia. We unfold new physiological pathways that have consequences for patients suffering from GC resistance.
Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , Dexametasona/metabolismo , Dexametasona/farmacologia , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismoRESUMO
Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.
Assuntos
Glândulas Suprarrenais/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Esteroides/biossíntese , Animais , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de SinaisRESUMO
MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing's syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing's disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.
Assuntos
Síndrome de Cushing , MicroRNAs , Glândulas Suprarrenais/metabolismo , Adrenalectomia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Síndrome de Cushing/classificação , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Humanos , Hidrocortisona/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Hipersecreção Hipofisária de ACTH/genética , Hipersecreção Hipofisária de ACTH/metabolismoRESUMO
The adrenal gland is important for many physiological and pathophysiological processes, but studies are often restricted by limited availability of sample material. Improved methods for sample preparation are needed to facilitate analyses of multiple classes of adrenal metabolites and macromolecules in a single sample. A procedure was developed for preparation of chromaffin cells, mouse adrenals, and human chromaffin tumors that allows for multi-omics analyses of different metabolites and preservation of native proteins. To evaluate the new procedure, aliquots of samples were also prepared using conventional procedures. Metabolites were analyzed by liquid-chromatography with mass spectrometry or electrochemical detection. Metabolite contents of chromaffin cells and tissues analyzed with the new procedure were similar or even higher than with conventional methods. Catecholamine contents were comparable between both procedures. The TCA cycle metabolites, cis-aconitate, isocitate, and α-ketoglutarate were detected at higher concentrations in cells, while in tumor tissue only isocitrate and potentially fumarate were measured at higher contents. In contrast, in a broad untargeted metabolomics approach, a methanol-based preparation procedure of adrenals led to a 1.3-fold higher number of detected metabolites. The established procedure also allows for simultaneous investigation of adrenal hormones and related enzyme activities as well as proteins within a single sample. This novel multi-omics approach not only minimizes the amount of sample required and overcomes problems associated with tissue heterogeneity, but also provides a more complete picture of adrenal function and intra-adrenal interactions than previously possible.
Assuntos
Glândulas Suprarrenais/química , Glândulas Suprarrenais/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Hormônios/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Neoplasias das Glândulas Suprarrenais/química , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Paraganglioma/química , Paraganglioma/metabolismo , Feocromocitoma/química , Feocromocitoma/metabolismoRESUMO
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Assuntos
Proteínas Angiogênicas/metabolismo , Vasos Sanguíneos/metabolismo , Hipóxia Celular , Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Proteínas Angiogênicas/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/fisiologia , Redes Reguladoras de Genes , Humanos , Fator 1 Induzível por Hipóxia/genética , Neovascularização FisiológicaRESUMO
Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Assuntos
Anemia/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritropoese , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Anemia/etiologia , Anemia/metabolismo , Animais , HumanosRESUMO
BACKGROUND: Dendritic cells (DC) induce adaptive responses against foreign antigens, and play an essential role in maintaining peripheral tolerance to self-antigens. Therefore they are involved in preventing fatal autoimmunity. Selective delivery of antigens to immature DC via the endocytic DEC-205 receptor on their surface promotes antigen-specific T cell tolerance, both by recessive and dominant mechanisms. We provide evidence that the induction of antigen-specific T cell tolerance is not a unique property of CD11c+CD8+DEC-205+ DCs. METHODS: We employed a fusion between αDCIR2 antibodies and the highly encephalitogenic peptide 139-151 of myelin-derived proteolipid protein (PLP139-151), to target CD11c +CD8- DCs with a DEC-205-DCIR2+ phenotype in vivo, and to substantially improve clinical symptoms in the PLP139-151-induced model of experimental autoimmune encephalomyelitis (EAE). RESULTS: Consistent with previous studies targeting other cell surface receptors, EAE protection mediated by αDCIR2-PLP139-151 fusion antibody (Ab) depended on an immature state of targeted DCIR2+ DCs. The mechanism of αDCIR2-PLP139-151 mAb function included the deletion of IL-17- and IFN-γ-producing pathogenic T cells, as well as the enhancement of regulatory T (Treg) cell activity. In contrast to the effect of αDEC-205+ fusion antibodies, which involves extrathymic induction of a Foxp3+ Treg cell phenotype in naïve CD4+Foxp3- T cells, treatment of animals with DCIR2+ fusion antibodies resulted in antigen-specific activation and proliferative expansion of natural Foxp3+ Treg cells. CONCLUSIONS: These results suggest that multiple mechanisms can lead to the expansion of the Treg population, depending on the DC subset and receptor targeted.
Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Tolerância Imunológica , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Proteína Proteolipídica de Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Receptores de Superfície Celular/imunologia , Transferência Adotiva , Animais , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/terapia , Feminino , Camundongos , Baço/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologiaRESUMO
Introduction: Polymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known. Methods & results: We investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function. Conclusion: We conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.
Assuntos
PPAR alfa , Sepse , Camundongos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Hepatócitos/metabolismo , Sepse/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Glucose/metabolismo , Luciferases , Camundongos KnockoutRESUMO
Background: We performed a transcriptomic analysis of adrenal signaling pathways in various forms of endogenous Cushing's syndrome (CS) to define areas of dysregulated and druggable targets. Methodology: Next-generation sequencing was performed on adrenal samples of patients with primary bilateral macronodular adrenal hyperplasia (PBMAH, n=10) and control adrenal samples (n=8). The validation groups included cortisol-producing adenoma (CPA, n=9) and samples from patients undergoing bilateral adrenalectomy for Cushing's disease (BADX-CD, n=8). In vivo findings were further characterized using three adrenocortical cell-lines (NCI-H295R, CU-ACC2, MUC1). Results: Pathway mapping based on significant expression patterns identified PPARG (peroxisome proliferator-activated receptor gamma) pathway as the top hit. Quantitative PCR (QPCR) confirmed that PPARG (l2fc<-1.5) and related genes - FABP4 (l2fc<-5.5), PLIN1 (l2fc<-4.1) and ADIPOQ (l2fc<-3.3) - were significantly downregulated (p<0.005) in PBMAH. Significant downregulation of PPARG was also found in BADX-CD (l2fc<-1.9, p<0.0001) and CPA (l2fc<-1.4, p<0.0001). In vitro studies demonstrated that the PPARG activator rosiglitazone resulted in decreased cell viability in MUC1 and NCI-H295R (p<0.0001). There was also a significant reduction in the production of aldosterone, cortisol, and cortisone in NCI-H295R and in Dihydrotestosterone (DHT) in MUC1 (p<0.05), respectively. Outcome: This therapeutic effect was independent of the actions of ACTH, postulating a promising application of PPARG activation in endogenous hypercortisolism.
Assuntos
Síndrome de Cushing , Humanos , Adrenalectomia/métodos , Síndrome de Cushing/genética , Síndrome de Cushing/cirurgia , Síndrome de Cushing/tratamento farmacológico , Hidrocortisona/metabolismo , Hiperplasia , PPAR gama/genéticaRESUMO
Adequate oxygen levels are essential for the functioning and maintenance of biological processes in virtually every cell, albeit based on specific need. Thus, any change in oxygen pressure leads to modulated activation of the hypoxia pathway, which affects numerous physiological and pathological processes, including hematopoiesis, inflammation, and tumor development. The Hypoxia Inducible Factors (HIFs) are essential transcription factors and the driving force of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase domain (PHDs) proteins are the true oxygen sensors that critically regulate this response. Recently, we and others have described the central role of the PHD/HIF axis in various compartments of the adrenal gland and its potential influence in associated tumors, including pheochromocytomas and paragangliomas. Here, we provide an overview of the most recent findings on the hypoxia signaling pathway in vivo, including its role in the endocrine system, especially in adrenal tumors.
Assuntos
Neoplasias das Glândulas Endócrinas , Hipóxia , Transdução de Sinais , Humanos , Hipóxia/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismoRESUMO
Solid tumors are typically associated with unbridled proliferation of malignant cells, accompanied by an immature and dysfunctional tumor-associated vascular network. Consequent impairment in transport of nutrients and oxygen eventually leads to a hypoxic environment wherein cells must adapt to survive and overcome these stresses. Hypoxia inducible factors (HIFs) are central transcription factors in the hypoxia response and drive the expression of a vast number of survival genes in cancer cells and in cells in the tumor microenvironment. HIFs are tightly controlled by a class of oxygen sensors, the HIF-prolyl hydroxylase domain proteins (PHDs), which hydroxylate HIFs, thereby marking them for proteasomal degradation. Remarkable and intense research during the past decade has revealed that, contrary to expectations, PHDs are often overexpressed in many tumor types, and that inhibition of PHDs can lead to decreased tumor growth, impaired metastasis, and diminished tumor-associated immune-tolerance. Therefore, PHDs represent an attractive therapeutic target in cancer research. Multiple PHD inhibitors have been developed that were either recently accepted in China as erythropoiesis stimulating agents (ESA) or are currently in phase III trials. We review here the function of HIFs and PHDs in cancer and related therapeutic opportunities.
RESUMO
Type 1 diabetes (T1D) represents a hallmark of the fatal multiorgan autoimmune syndrome affecting humans with abrogated Foxp3+ regulatory T (Treg) cell function due to Foxp3 gene mutations, but whether the loss of Foxp3+ Treg cell activity is indeed sufficient to promote ß cell autoimmunity requires further scrutiny. As opposed to human Treg cell deficiency, ß cell autoimmunity has not been observed in non-autoimmune-prone mice with constitutive Foxp3 deficiency or after diphtheria toxin receptor (DTR)-mediated ablation of Foxp3+ Treg cells. In the spontaneous nonobese diabetic (NOD) mouse model of T1D, constitutive Foxp3 deficiency did not result in invasive insulitis and hyperglycemia, and previous studies on Foxp3+ Treg cell ablation focused on Foxp3DTR NOD mice, in which expression of a transgenic BDC2.5 T cell receptor (TCR) restricted the CD4+ TCR repertoire to a single diabetogenic specificity. Here we revisited the effect of acute Foxp3+ Treg cell ablation on ß cell autoimmunity in NOD mice in the context of a polyclonal TCR repertoire. For this, we took advantage of the well-established DTR/GFP transgene of DEREG mice, which allows for specific ablation of Foxp3+ Treg cells without promoting catastrophic autoimmune diseases. We show that the transient loss of Foxp3+ Treg cells in prediabetic NOD.DEREG mice is sufficient to precipitate severe insulitis and persistent hyperglycemia within 5 days after DT administration. Importantly, DT-treated NOD.DEREG mice preserved many clinical features of spontaneous diabetes progression in the NOD model, including a prominent role of diabetogenic CD8+ T cells in terminal ß cell destruction. Despite the severity of destructive ß cell autoimmunity, anti-CD3 mAb therapy of DT-treated mice interfered with the progression to overt diabetes, indicating that the novel NOD.DEREG model can be exploited for preclinical studies on T1D under experimental conditions of synchronized, advanced ß cell autoimmunity. Overall, our studies highlight the continuous requirement of Foxp3+ Treg cell activity for the control of genetically pre-installed autoimmune diabetes.
Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva/métodos , Animais , Anticorpos Monoclonais/farmacologia , Complexo CD3/antagonistas & inibidores , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunofenotipagem , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , FenótipoRESUMO
High erythropoietin (Epo) levels are detrimental to bone health in adult organisms. Adult mice receiving high doses of Epo lose bone mass due to suppressed bone formation and increased bone resorption. In humans, high serum Epo levels are linked to fractures in elderly men. Our earlier studies indicated that Epo modulates osteoblast activity; however, direct evidence that Epo acts via its receptor (EpoR) on osteoblasts in vivo is still missing. Here, we created mice lacking EpoR in osteoprogenitor cells to specifically address this gap. Deletion of EpoR in osteoprogenitors (EpoR:Osx-cre, cKO) starting at 5 weeks of age did not alter red blood cell parameters but increased vertebral bone volume by 25% in 12-week-old female mice. This was associated with low bone turnover. Histological (osteoblast number, bone formation rate) and serum (P1NP, osteocalcin) bone formation parameters were all reduced, as were the number of osteoclasts and TRAP serum level. Differentiation of osteoblast precursors isolated from cKO versus control mice resulted in lower expression of osteoblast marker genes including Runx2, Alp, and Col1a1 on day 21, whereas the mineralization capacity was similar. Moreover, the RANKL/OPG ratio, which determines the osteoclast-supporting potential of osteoblasts, was substantially decreased by 50%. Similarly, coculturing cKO osteoblasts with control or cKO osteoclast precursors produced significantly fewer osteoclasts than coculture with control osteoblasts. Finally, exposing female mice to Epo pumps (10 U·d-1) for 4 weeks resulted in trabecular bone loss (-25%) and increased osteoclast numbers (1.7-fold) in control mice only, not in cKO mice. Our data show that EpoR in osteoprogenitors is essential in regulating osteoblast function and osteoblast-mediated osteoclastogenesis via the RANKL/OPG axis. Thus, osteogenic Epo/EpoR signaling controls bone mass maintenance and contributes to Epo-induced bone loss.
RESUMO
The adrenal gland and its hormones regulate numerous fundamental biological processes; however, the impact of hypoxia signaling on adrenal function remains poorly understood. Here, we reveal that deficiency of HIF (hypoxia inducible factors) prolyl hydroxylase domain protein-2 (PHD2) in the adrenal medulla of mice results in HIF2α-mediated reduction in phenylethanolamine N-methyltransferase (PNMT) expression, and consequent reduction in epinephrine synthesis. Simultaneous loss of PHD2 in renal erythropoietin (EPO)-producing cells (REPCs) stimulated HIF2α-driven EPO overproduction, excessive RBC formation (erythrocytosis), and systemic hypoglycemia, which is necessary and sufficient to enhance exocytosis of epinephrine from the adrenal medulla. Based on these results, we propose that the PHD2-HIF2α axis in the adrenal medulla regulates the synthesis of epinephrine, whereas in REPCs, it indirectly induces the release of this hormone. Our findings are also highly relevant to the testing of small molecule PHD inhibitors in phase III clinical trials for patients with renal anemia. KEY MESSAGES: HIF2α and not HIF1α modulates PNMT during epinephrine synthesis in chromaffin cells. The PHD2-HIF2α-EPO axis induces erythrocytosis and hypoglycemia. Reduced systemic glucose facilitates exocytosis of epinephrine from adrenal gland.
Assuntos
Medula Suprarrenal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epinefrina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cálcio/metabolismo , Eritropoetina/metabolismo , Feminino , Hipoglicemia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Camundongos Transgênicos , Feniletanolamina N-Metiltransferase/genética , Feniletanolamina N-Metiltransferase/metabolismo , Policitemia/metabolismo , Células Tumorais CultivadasRESUMO
Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3(+) Tregs selectively express eGFP and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about important considerations such as DT toxicity, which affects any mouse strain treated with DT, and Treg rebound after depletion. Additionally, we point out the specific advantages of BAC-transgenic DEREG mice including their suitability to study organ-specific autoimmunity such as type I diabetes. Moreover, we discuss recent insights into the role of Tregs in viral infections. In summary, DEREG mice are an important tool to study Treg-mediated tolerance and its therapeutic circumvention.
RESUMO
Studies on human type 1 diabetes (T1D) are facilitated by the availability of animal models such as nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes, as well as a variety of genetically engineered mouse models with reduced genetic and pathogenic complexity, as compared to the spontaneous NOD model. In recent years, increasing evidence has implicated CD4(+)CD25(+) regulatory T (Treg) cells expressing the transcription factor Foxp3 in both the breakdown of self-tolerance and the restoration of immune homeostasis in T1D. In this paper, we provide an overview of currently available mouse models to study the role of Foxp3(+) Treg cells in the control of destructive ß cell autoimmunity, including a novel NOD model that allows specific and temporally controlled deletion of Foxp3(+) Treg cells.