Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FASEB J ; 33(3): 4626-4637, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576228

RESUMO

Aggregated amyloid ß (Aß) peptides in the Alzheimer's disease (AD) brain are hypothesized to trigger several downstream pathologies, including cerebrovascular dysfunction. Previous studies have shown that Aß peptides can have antiangiogenic properties, which may contribute to vascular dysfunction in the early stages of the disease process. We have generated data showing that brain endothelial cells (ECs) exposed to toxic Aß1-42 oligomers can readily enter a senescence phenotype. To determine the effect of Aß oligomers on brain ECs, we treated early passaged human brain microvascular ECs and HUVECs with high MW Aß1-42 oligomers (5 µM, for 72 h). For controls, we used no peptide treatment, 5 µM Aß1-42 monomers, and 5 µM Aß1-42 fibrils, respectively. Brain ECs treated with Aß1-42 oligomers showed increased senescence-associated ß-galactosidase staining and increased senescence-associated p21/p53 expression. Treatment with either Aß1-42 monomer or Aß1-42 fibrils did not induce senescence in this assay. We then measured vascular endothelial growth factor receptor (VEGFR) expression in the Aß1-42 oligomer-treated ECs, and these cells showed significantly increased VEGFR-1 expression and decreased VEGFR-2 levels. Overexpression of VEGFR-1 in brain ECs readily induced senescence, suggesting a direct role of VEGFR-1 signaling events in this paradigm. More importantly, small interfering RNA-mediated knockdown of VEGFR-1 expression in brain ECs was able to prevent up-regulation of p21 protein expression and significantly reduced induction of senescence following Aß1-42 oligomer treatment. Our studies show that exposure to Aß1-42 oligomers may impair vascular functions by altering VEGFR-1 expression and causing ECs to enter a senescent phenotype. Altered VEGFR expression has been documented in brains of AD patients and suggests that this pathway may play a role in AD disease pathogenesis. These studies suggest that modulating VEGFR-1 expression and signaling events could potentially prevent senescence and rejuvenate EC functions, and provides us with a novel target to pursue for prevention and treatment of cerebrovascular dysfunction in AD.-Angom, R. S., Wang, Y., Wang, E., Pal, K., Bhattacharya, S., Watzlawik, J. O., Rosenberry, T. L., Das, P., Mukhopadhyay, D. VEGF receptor-1 modulates amyloid ß 1-42 oligomer-induced senescence in brain endothelial cells.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Encéfalo/irrigação sanguínea , Capilares/citologia , Sobrevivência Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Alzheimers Dement ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090691

RESUMO

INTRODUCTION: The cytoprotective PTEN-induced kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase (PRKN) pathway selectively labels damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) for their autophagic removal (mitophagy). Because dysfunctions of mitochondria and degradation pathways are early features of Alzheimer's disease (AD), mitophagy impairments may contribute to the pathogenesis. METHODS: Morphology, levels, and distribution of the mitophagy tag pS65-Ub were evaluated by biochemical analyses combined with tissue and single cell imaging in AD autopsy brain and in transgenic mouse models. RESULTS: Analyses revealed significant increases of pS65-Ub levels in AD brain, which strongly correlated with granulovacuolar degeneration (GVD) and early phospho-tau deposits, but were independent of amyloid beta pathology. Single cell analyses revealed predominant co-localization of pS65-Ub with mitochondria, GVD bodies, and/or lysosomes depending on the brain region analyzed. DISCUSSION: Our study highlights mitophagy alterations in AD that are associated with early tau pathology, and suggests that distinct mitochondrial, autophagic, and/or lysosomal failure may contribute to the selective vulnerability in disease.

3.
PLoS Pathog ; 11(12): e1005311, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633895

RESUMO

For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.


Assuntos
Genes Virais/imunologia , Imunidade Inata/imunologia , RNA Polimerase Dependente de RNA/imunologia , Proteínas Virais/imunologia , Animais , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunidade Inata/genética , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Picornaviridae/genética , Picornaviridae/imunologia , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroses/imunologia , Viroses/prevenção & controle
4.
J Neuroinflammation ; 13(1): 293, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27855706

RESUMO

BACKGROUND: We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. METHODS: Human class I A11+ and B27+ transgenic human beta-2 microglobulin positive (Hß2m+) mice of the H-2 b background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, ß2m0) and class II-deficient (mouse Aß0) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. RESULTS: Following infection with TMEV, a picornavirus, the Aß0.ß2m0 mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hß2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11+ and B27+ mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27+ transgenic mice showed almost complete repair of the virus-induced brain injury, but A11+ mice conversely showed persistent severe hippocampal and cortical injury. CONCLUSIONS: The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.


Assuntos
Infecções por Cardiovirus/patologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Theilovirus/fisiologia , Análise de Variância , Animais , Anticorpos/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Antígeno HLA-A11/metabolismo , Antígeno HLA-B27/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
5.
J Neurochem ; 134(5): 865-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25866077

RESUMO

CNS regeneration is a desirable goal for diseases of brain and spinal cord. Current therapeutic strategies for the treatment of multiple sclerosis (MS) aim to eliminate detrimental effects of the immune system, so far without reversing disability or affecting long-term prognosis in patients. Approachable molecular targets that stimulate CNS repair are not part of the clinical praxis or have not been identified yet. The purpose of this study was to identify the molecular target of the human monoclonal antibody HIgM12. HIgM12 reverses motor deficits in chronically demyelinated mice, a model of MS. Here, we identified polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM) as the antigen for HIgM12 by using different NCAM knockout strains and through PSA removal from the NCAM protein core. Antibody binding to CNS tissue and primary cells, antibody-mediated cell adhesion, and neurite outgrowth on HIgM12-coated nitrocellulose was detected only in the presence of PSA as assessed by western blotting, immunoprecipitation, immunocytochemistry, and histochemistry. We conclude that HIgM12 mediates its in vivo and in vitro effects through binding to PSA and has the potential to be an effective therapy for MS and neurodegenerative diseases. The human antibody HIgM12 stimulates neurite outgrowth in vitro and promotes function in chronically demyelinated mice, a model of multiple sclerosis. The cellular antigen for HIgM12 was undetermined. Here, we identified polysialic acid attached to NCAM (neural cell adhesion molecule) as the cellular target for HIgM12. This includes glial fibrillary acidic protein (GFAP)-positive mouse astrocytes (GFAP, red; HIgM12, green; DAPI, blue) among other cell types of the central nervous system. These findings indicate a new strategy for the treatment of neuro-motor disorders including multiple sclerosis.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos/imunologia , Antígeno CD56/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Ácidos Siálicos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Antígeno CD56/química , Antígeno CD56/genética , Adesão Celular , Células Cultivadas , Cerebelo/citologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glicosilação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/imunologia , Regeneração Nervosa , Neuraminidase/farmacologia , Neuritos/efeitos dos fármacos , Doenças Neurodegenerativas/imunologia , Neuroglia/citologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/ultraestrutura , Ratos , Ratos Sprague-Dawley
6.
J Neuroinflammation ; 12: 83, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25924771

RESUMO

BACKGROUND: Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. FINDINGS: (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. CONCLUSIONS: This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Ácido Aspártico/análogos & derivados , Tronco Encefálico/metabolismo , Glicoproteínas de Membrana/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Proteínas do Envelope Viral/imunologia , Animais , Ácido Aspártico/metabolismo , Axônios/efeitos dos fármacos , Encéfalo/patologia , Tronco Encefálico/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Esclerose Múltipla/etiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Estatísticas não Paramétricas , Theilovirus/imunologia
7.
medRxiv ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38947067

RESUMO

Background: Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods: We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results: We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions: NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.

8.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38463988

RESUMO

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

9.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585731

RESUMO

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

10.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746191

RESUMO

The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.

11.
Autophagy ; : 1-16, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802071

RESUMO

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.

12.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293125

RESUMO

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and ELISA. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.

13.
Genes (Basel) ; 14(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37628636

RESUMO

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Autofagia/genética , Mitocôndrias/genética , Metabolismo Energético
14.
Commun Biol ; 6(1): 1184, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989804

RESUMO

Amyloid beta (Aß) aggregation is a slow process without seeding or assisted nucleation. Sodium dodecyl sulfate (SDS) micelles stabilize Aß42 small oligomers (in the dimer to tetramer range); subsequent SDS removal leads to a 150-kD Aß42 oligomer. Dodecylphosphorylcholine (DPC) micelles also stabilize an Aß42 tetramer. Here we investigate the detergent-assisted oligomerization pathway by solid-state NMR spectroscopy and molecular dynamics simulations. SDS- and DPC-induced oligomers have the same structure, implying a common oligomerization pathway. An antiparallel ß-sheet formed by the C-terminal region, the only stable structure in SDS and DPC micelles, is directly incorporated into the 150-kD oligomer. Three Gly residues (at positions 33, 37, and 38) create holes that are filled by the SDS and DPC hydrocarbon tails, thereby turning a potentially destabilizing feature into a stabilizing factor. These observations have implications for endogenous Aß aggregation at cellular interfaces.


Assuntos
Peptídeos beta-Amiloides , Detergentes , Peptídeos beta-Amiloides/metabolismo , Micelas , Estrutura Secundária de Proteína
15.
Autophagy ; 19(6): 1711-1732, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469690

RESUMO

The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.


Assuntos
Doença de Parkinson , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Ubiquitina/metabolismo
16.
Autophagy ; : 1-12, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041584

RESUMO

The ubiquitin kinase-ligase pair PINK1-PRKN recognizes and transiently labels damaged mitochondria with ubiquitin phosphorylated at Ser65 (p-S65-Ub) to mediate their selective degradation (mitophagy). Complete loss of PINK1 or PRKN function unequivocally leads to early-onset Parkinson disease, but it is debated whether impairments in mitophagy contribute to disease later in life. While the pathway has been extensively studied in cell culture upon acute and massive mitochondrial stress, basal levels of activation under endogenous conditions and especially in vivo in the brain remain undetermined. Using rodent samples, patient-derived cells, and isogenic neurons, we here identified age-dependent, brain region-, and cell type-specific effects and determined expression levels and extent of basal and maximal activation of PINK1 and PRKN. Our work highlights the importance of defining critical risk and therapeutically relevant levels of PINK1-PRKN signaling which will further improve diagnosis and prognosis and will lead to better stratification of patients for future clinical trials.

17.
medRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905059

RESUMO

The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; ß : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; ß : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.

18.
Autophagy ; 17(9): 2613-2628, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33112198

RESUMO

Mitochondrial dysfunction is an early, imminent event in neurodegenerative disorders including Parkinson disease (PD) and Alzheimer disease (AD). The enzymatic pair PINK1 and PRKN/Parkin recognize and transiently label damaged mitochondria with ubiquitin (Ub) phosphorylated at Ser65 (p-S65-Ub) as a signal for degradation via the autophagy-lysosome system (mitophagy). Despite its discovery in cell culture several years ago, robust and quantitative detection of altered mitophagy in vivo has remained challenging. Here we developed a sandwich ELISA targeting p-S65-Ub with the goal to assess mitophagy levels in mouse brain and in human clinical and pathological samples. We characterized five total Ub and four p-S65-Ub antibodies by several techniques and found significant differences in their ability to recognize phosphorylated Ub. The most sensitive antibody pair detected recombinant p-S65-Ub chains in the femtomolar to low picomolar range depending on the poly-Ub chain linkage. Importantly, this ELISA was able to assess very low baseline mitophagy levels in unstressed human cells and in brains from wild-type and prkn knockout mice as well as elevated p-S65-Ub levels in autopsied frontal cortex from AD patients vs. control cases. Moreover, the assay allowed detection of p-S65-Ub in blood plasma and was able to discriminate between PINK1 mutation carriers and controls. In summary, we developed a robust and sensitive tool to measure mitophagy levels in cells, tissue, and body fluids. Our data strongly support the idea that the stress-activated PINK1-PRKN mitophagy pathway is constitutively active in mice and humans under unstimulated, physiological and elevated in diseased, pathological conditions.Abbreviations: Ab: antibody; AD: Alzheimer disease; AP: alkaline phosphatase; CV: coefficient of variation; ECL: electrochemiluminescence; KO: knockout; LoB: Limit of Blank; LoD: Limit of Detection; LoQ: Limit of Quantification; MSD: meso scale discovery; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated ubiquitin at serine 65; Std.Dev.: standard deviation; Ub: ubiquitin; WT: wild type.


Assuntos
Mitofagia , Ubiquitina , Animais , Autofagia , Autopsia , Encéfalo/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Mitofagia/genética , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
J Mol Biol ; 432(8): 2651-2672, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32061929

RESUMO

Impaired protein homeostasis and accumulation of damaged or abnormally modified protein are common disease mechanisms in many neurodegenerative disorders, including Parkinson's disease (PD). As one of the major degradation pathways, autophagy plays a pivotal role in maintaining effective turnover of proteins and damaged organelles in cells. Several decades of research efforts led to insights into the potential contribution of impaired autophagy machinery to α-synuclein accumulation and the degeneration of dopaminergic neurons, two major features of PD pathology. In this review, we summarize recent pathological, genetic, and mechanistic findings that link defective autophagy with PD pathogenesis in human patients, animals, and cellular models and discuss current challenges in the field.


Assuntos
Autofagia , Doença de Parkinson/patologia , Animais , Humanos
20.
J Mol Biol ; 432(16): 4388-4407, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32470558

RESUMO

We present solid-state NMR measurements of ß-strand secondary structure and inter-strand organization within a 150-kDa oligomeric aggregate of the 42-residue variant of the Alzheimer's amyloid-ß peptide (Aß(1-42)). We build upon our previous report of a ß-strand spanned by residues 30-42, which arranges into an antiparallel ß-sheet. New results presented here indicate that there is a second ß-strand formed by residues 11-24. Contrary to expectations, NMR data indicate that this second ß-strand is organized into a parallel ß-sheet despite the co-existence of an antiparallel ß-sheet in the same structure. In addition, the in-register parallel ß-sheet commonly observed for amyloid fibril structure does not apply to residues 11-24 in the 150-kDa oligomer. Rather, we present evidence for an inter-strand registry shift of three residues that likely alternate in direction between adjacent molecules along the ß-sheet. We corroborated this unexpected scheme for ß-strand organization using multiple two-dimensional NMR and 13C-13C dipolar recoupling experiments. Our findings indicate a previously unknown assembly pathway and inspire a suggestion as to why this aggregate does not grow to larger sizes.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Modelos Moleculares , Conformação Proteica em Folha beta , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA