Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7756): E4, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31043737

RESUMO

Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.

2.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505242

RESUMO

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Assuntos
COVID-19 , Humanos , Proteólise , Quimiocina CXCL12/metabolismo , Peptídeo Hidrolases , Pulmão/metabolismo , Receptores CXCR4 , Processamento de Proteína Pós-Traducional
3.
Radiology ; 307(1): e221145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537894

RESUMO

Background Interstitial lung abnormalities (ILAs) reflect imaging features on lung CT scans that are compatible with (early) interstitial lung disease. Despite accumulating evidence regarding the incidence, risk factors, and prognosis of ILAs, the histopathologic correlates of ILAs remain elusive. Purpose To determine the correlation between radiologic and histopathologic findings in CT-defined ILAs in human lung explants. Materials and Methods Explanted lungs or lobes from participants with radiologically documented ILAs were prospectively collected from 2010 to 2021. These specimens were air-inflated, frozen, and scanned with CT and micro-CT (spatial resolution of 0.7 mm and 90 µm, respectively). Subsequently, the lungs were cut and sampled with core biopsies. At least five samples per lung underwent micro-CT and subsequent histopathologic assessment with semiquantitative remodeling scorings. Based on area-specific radiologic scoring, the association between radiologic and histopathologic findings was assessed. Results Eight lung explants from six donors (median age at explantation, 71 years [range, 60-83 years]; four men) were included (unused donor lungs, n = 4; pre-emptive lobectomy for oncologic indications, n = 2). Ex vivo CT demonstrated ground-glass opacification, reticulation, and bronchiectasis. Micro-CT and histopathologic examination demonstrated that lung abnormalities were frequently paraseptal and associated with fibrosis and lymphocytic inflammation. The histopathologic results showed varying degrees of fibrosis in areas that appeared normal on CT scans. Regions of reticulation on CT scans generally had greater fibrosis at histopathologic analysis. Vasculopathy and bronchiectasis were also often present at histopathologic examination of lungs with ILAs. Fully developed fibroblastic foci were rarely observed. Conclusion This study demonstrated direct histologic correlates of CT-defined interstitial lung abnormalities. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Jeudy in this issue.


Assuntos
Bronquiectasia , Doenças Pulmonares Intersticiais , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pulmão/diagnóstico por imagem , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Fibrose , Microtomografia por Raio-X
4.
Nature ; 546(7656): 168-172, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538732

RESUMO

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , DNA/biossíntese , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Amônia/metabolismo , Animais , Bicarbonatos/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular , Proliferação de Células , Dano ao DNA/efeitos dos fármacos , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Inativação Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/metabolismo , Pirimidinas/farmacologia , Fase S , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Chem ; 68(9): 1164-1176, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35769009

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. METHODS: By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. RESULTS: Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. CONCLUSIONS: This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Sequenciamento Completo do Genoma
6.
Nature ; 522(7556): 349-53, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25985180

RESUMO

Mutations or amplification of the MET proto-oncogene are involved in the pathogenesis of several tumours, which rely on the constitutive engagement of this pathway for their growth and survival. However, MET is expressed not only by cancer cells but also by tumour-associated stromal cells, although its precise role in this compartment is not well characterized. Here we show that MET is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor (HGF). Met deletion in mouse neutrophils enhances tumour growth and metastasis. This phenotype correlates with reduced neutrophil infiltration to both the primary tumour and metastatic sites. Similarly, Met is necessary for neutrophil transudation during colitis, skin rash or peritonitis. Mechanistically, Met is induced by tumour-derived tumour necrosis factor (TNF)-α or other inflammatory stimuli in both mouse and human neutrophils. This induction is instrumental for neutrophil transmigration across an activated endothelium and for inducible nitric oxide synthase production upon HGF stimulation. Consequently, HGF/MET-dependent nitric oxide release by neutrophils promotes cancer cell killing, which abates tumour growth and metastasis. After systemic administration of a MET kinase inhibitor, we prove that the therapeutic benefit of MET targeting in cancer cells is partly countered by the pro-tumoural effect arising from MET blockade in neutrophils. Our work identifies an unprecedented role of MET in neutrophils, suggests a potential 'Achilles' heel' of MET-targeted therapies in cancer, and supports the rationale for evaluating anti-MET drugs in certain inflammatory diseases.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Idoso , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Deleção de Genes , Fator de Crescimento de Hepatócito , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/deficiência , Proteínas Proto-Oncogênicas c-met/genética , Solubilidade , Migração Transendotelial e Transepitelial , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Immunol ; 201(5): 1558-1569, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037849

RESUMO

Chronic obstructive pulmonary disease is a chronic inflammatory disorder with an increased incidence of lung cancer. The emphysema component of chronic obstructive pulmonary disease confers the greatest proportion to lung cancer risk. Although tumors create inflammatory conditions to escape immunity, the immunological responses that control growth of nascent cancer cells in pre-established inflammatory microenvironments are unknown. In this study, we addressed this issue by implanting OVA-expressing cancer cells in the lungs of mice with cigarette smoke-induced emphysema. Emphysema augmented the growth of cancer cells, an effect that was dependent on T cytotoxic cells. OVA-specific OTI T cells showed early signs of exhaustion upon transfer in emphysema tumor hosts that was largely irreversible because sorting, expansion, and adoptive transfer failed to restore their antitumor activity. Increased numbers of PD-L1- and IDO-positive CD11c+ myeloid dendritic cells (DCs) infiltrated emphysema tumors, whereas sorted emphysema tumor DCs poorly stimulated OTI T cells. Upon adoptive transfer in immunocompetent hosts, T cells primed by emphysema tumor DCs were unable to halt tumor growth. DCs exposed to the emphysema tumor microenvironment downregulated MHC class II and costimulatory molecules, whereas they upregulated PD-L1/IDO via oxidative stress-dependent mechanisms. T cell activation increased upon PD-L1 blockade in emphysema DC-T cell cocultures and in emphysema tumor hosts in vivo. Analysis of the transcriptome of primary human lung tumors showed a strong association between computed tomography-based emphysema scoring and downregulation of immunogenic processes. Thus, suppression of adaptive immunity against lung cancer cells links a chronic inflammatory disorder, emphysema, to cancer, with clinical implications for emphysema patients to be considered optimal candidates for cancer immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Fumar Cigarros/imunologia , Neoplasias Pulmonares/imunologia , Enfisema Pulmonar/imunologia , Transferência Adotiva , Animais , Fumar Cigarros/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Enfisema Pulmonar/fisiopatologia
8.
Respiration ; 96(3): 275-282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29961053

RESUMO

BACKGROUND: A flexible 19-gauge (Flex 19G) needle has been developed for endobronchial ultrasonography. OBJECTIVES: We aimed to evaluate quantitative and qualitative specimen characteristics of Flex 19G in a randomized controlled setting for patients with suspected lung cancer. METHODS: We undertook a single-center, randomized, controlled trial. A computer-generated randomization assigned all enrolled patients 1: 1 to undergo endobronchial ultrasonography using a Flex 19G or a 22-gauge (22G) needle for lymph node tissue sampling. Pathologists were blinded to the group assignment. The primary end point was histological tissue core procurement. The secondary end points were diagnostic yield, specimen bloodiness and overall quality, tissue surface area and performance for next-generation sequencing (NGS), and procedure-related complications. RESULTS: Between June 2016 and February 2017, we randomly allocated a total of 78 patients: 39 patients to Flex 19G and 39 patients to 22G. No superiority in tissue core procurement was observed for Flex 19G compared to 22G (67 vs. 72%, p = 0.81). No significant difference was observed in diagnostic yield and overall specimen quality, but transbronchial needle aspiration specimens by Flex 19G were bloodier and had a larger tissue surface area. NGS was successful for clinically relevant genes in 96% and for all 26 genes tested in 81% of the samples. There was no difference in clinically relevant complications. CONCLUSIONS: No superiority is observed for Flex 19G in histological tissue core procurement rate. The Flex 19G needle could be considered when a larger tissue surface is of special interest.


Assuntos
Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/instrumentação , Neoplasias Pulmonares/diagnóstico , Agulhas/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Thorax ; 72(11): 998-1006, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637835

RESUMO

BACKGROUND: COPD is a heterogeneous disease, but there is little consensus on specific definitions for COPD subtypes. Unsupervised clustering offers the promise of 'unbiased' data-driven assessment of COPD heterogeneity. Multiple groups have identified COPD subtypes using cluster analysis, but there has been no systematic assessment of the reproducibility of these subtypes. OBJECTIVE: We performed clustering analyses across 10 cohorts in North America and Europe in order to assess the reproducibility of (1) correlation patterns of key COPD-related clinical characteristics and (2) clustering results. METHODS: We studied 17 146 individuals with COPD using identical methods and common COPD-related characteristics across cohorts (FEV1, FEV1/FVC, FVC, body mass index, Modified Medical Research Council score, asthma and cardiovascular comorbid disease). Correlation patterns between these clinical characteristics were assessed by principal components analysis (PCA). Cluster analysis was performed using k-medoids and hierarchical clustering, and concordance of clustering solutions was quantified with normalised mutual information (NMI), a metric that ranges from 0 to 1 with higher values indicating greater concordance. RESULTS: The reproducibility of COPD clustering subtypes across studies was modest (median NMI range 0.17-0.43). For methods that excluded individuals that did not clearly belong to any cluster, agreement was better but still suboptimal (median NMI range 0.32-0.60). Continuous representations of COPD clinical characteristics derived from PCA were much more consistent across studies. CONCLUSIONS: Identical clustering analyses across multiple COPD cohorts showed modest reproducibility. COPD heterogeneity is better characterised by continuous disease traits coexisting in varying degrees within the same individual, rather than by mutually exclusive COPD subtypes.


Assuntos
Análise por Conglomerados , Volume Expiratório Forçado , Doença Pulmonar Obstrutiva Crônica/classificação , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Índice de Massa Corporal , Europa (Continente)/epidemiologia , Humanos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Reprodutibilidade dos Testes , Estados Unidos/epidemiologia
10.
Thorax ; 70(12): 1113-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26349763

RESUMO

INTRODUCTION: Non-small cell lung cancer (NSCLC) is a heterogeneous disorder consisting of distinct molecular subtypes each characterised by specific genetic and epigenetic profiles. Here, we aimed to identify novel NSCLC subtypes based on genome-wide methylation data, assess their relationship with smoking behaviour, age, COPD, emphysema and tumour histopathology, and identify the molecular pathways underlying each subtype. METHODS: Methylation profiling was performed on 49 pairs of tumour and adjacent lung tissue using Illumina 450 K arrays. Transcriptome sequencing was performed using Illumina HiSeq2000 and validated using expression data from The Cancer Genome Atlas (TCGA). Tumour immune cell infiltration was investigated by immunohistochemistry. RESULTS: Unsupervised hierarchical clustering of tumour methylation data revealed two subgroups characterised by a significant association between cluster membership and presence of COPD (p=0.024). Ontology analysis of genes containing differentially methylated CpGs (false discovery rate, FDR-adjusted p<0.05) revealed that immune genes were strongly enriched in COPD tumours, but not in non-COPD tumours. This COPD-specific immune signature was attributable to methylation changes in immune genes expressed either by tumour cells or tumour-infiltrating immune cells. No such differences were observed in adjacent tissue. Transcriptome profiling similarly revealed that genes involved in the immune response were differentially expressed in COPD tumours (FDR-adjusted p<0.05), an observation that was independently replicated using TCGA data. Immunohistochemistry validated these findings, revealing fewer CD4-positive T lymphocytes in tumours derived from patients with COPD. CONCLUSIONS: Lung tumours of patients with COPD differ from those of patients without COPD, with differentially methylated and expressed genes being mainly involved in the immune response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Metilação de DNA/imunologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/imunologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Comorbidade , Humanos
11.
Respiration ; 88(5): 371-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25300340

RESUMO

BACKGROUND: Biomarker-driven clinical trials in advanced non-small cell lung cancer (NSCLC) usually accept biopsy specimens only, as cytology specimens are supposed to be more challenging due to low neoplastic cell content and suboptimal DNA quantity. OBJECTIVES: We aimed to evaluate 2 aspects of bronchoscopic biopsy and cytology specimens: (1) the proportion of neoplastic cells and quantity of DNA extracted, and (2) the detection limit of the Scorpion amplification refractory mutation system on endoscopic samples obtained in daily clinical practice. METHODS: We screened 679 patients with advanced-stage NSCLC for the presence of an activating EGFR mutation according to the guidelines of the European Society of Medical Oncology. Their diagnostic tumour tissue samples were characterized. A dilution experiment was performed to determine the minimal proportion of neoplastic cells for a reliable test result. RESULTS: Surgical biopsies, bronchoscopic forceps biopsy samples and needle aspiration cytology specimens exhibited a median tumour cell proportion of 70 versus 30 versus 20% and a DNA quantity of 2,500 versus 1,610 versus 1,440 ng, respectively. The overall EGFR mutation rate was 11%, with no differences between different sample types. Dilution experiments showed that the detection limit depends on the type of mutation. A neoplastic cell content of at least 10 and 25% for exon 19 deletions and exon 21 L858R point mutation, respectively, was required for a true negative result. CONCLUSIONS: Bronchoscopic forceps biopsy and needle aspiration cytology specimens are suitable for accurate EGFR mutation analysis using single-gene quantitative real-time polymerase chain reaction. Technologies with a better analytical sensitivity are evolving and should consider these endoscopic tumour specimens.


Assuntos
Broncoscopia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Genótipo , Neoplasias Pulmonares/genética , Mutação/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Humanos , Neoplasias Pulmonares/patologia , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
12.
Eur Heart J ; 34(13): 993-1001, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23161703

RESUMO

AIMS: A pooled analysis of 14 genome-wide association studies revealed 23 susceptibility loci for coronary artery disease (CAD), thereby providing the most comprehensive genetic blueprint of CAD susceptibility. Here, we evaluated whether these 23 loci also predispose to recurrent myocardial infarction (MI) or cardiac death following an acute coronary syndrome (ACS). METHODS AND RESULTS: A total of 2099 ACS patients enrolled in the Global Registry of Acute Coronary Events (GRACE) UK-Belgian study were prospectively followed for a median of 5 years (1668 days). C-allele carriers of the rs579459 variant, which is located upstream of the ABO gene and correlates with blood group A, were independently associated with recurrent MI [multivariable-adjusted hazard ratio (HR) 2.25, CI = 1.37-3.71; P = 0.001] and with recurrent MI or cardiac death [multivariable-adjusted (HR) 1.80, CI = 1.09-2.95; P = 0.021] within 5 years after an index ACS. The association of rs579459 was replicated in 1250 Polish patients with 6 months follow-up after an index ACS [multivariable-adjusted (HR) 2.70, CI = 1.26-5.82; P = 0.011 for recurrent MI]. Addition of rs579459 to a prediction model of 17 clinical risk factors improved risk classification for recurrent MI or cardiac death at 6 months as calculated by the integrated discrimination improvement method (P = 0.037), but not by C-statistics (P = 0.096). CONCLUSION: In this observational study, rs579459 was independently associated with adverse cardiac outcome after ACS. A weak improvement in clinical risk prediction was also observed, suggesting that rs579459 should be further tested as a potentially relevant contributor to risk prediction models for adverse outcome following ACS.


Assuntos
Doença da Artéria Coronariana/genética , Morte Súbita Cardíaca/etiologia , Predisposição Genética para Doença/genética , Infarto do Miocárdio/genética , Sistema ABO de Grupos Sanguíneos/genética , Idoso , Bélgica/epidemiologia , Doença da Artéria Coronariana/mortalidade , Morte Súbita Cardíaca/epidemiologia , Feminino , Frequência do Gene , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/mortalidade , Fenótipo , Polônia/epidemiologia , Prognóstico , Estudos Prospectivos , Recidiva , Sistema de Registros , Fatores de Risco , Reino Unido/epidemiologia
13.
Int Rev Cell Mol Biol ; 382: 181-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225103

RESUMO

Immune checkpoints (ICs) play a central role in maintaining immune homoeostasis. The discovery that tumours use this physiological mechanism to avoid elimination by the immune system, opened up avenues for therapeutic targeting of ICs as a novel way of treating cancer. However, this therapy a new array of autoimmune side effects, termed immune-related adverse events (irAEs). In this narrative review, we first recapitulate the physiological function of ICs that are approved targets for cancer immunotherapy (CTLA-4, PD-(L)1 and LAG-3), as the groundwork to critically discuss current knowledge on irAEs. Specifically, we summarize clinical aspects and examine a molecular classification and predisposing factors of irAEs. Finally, we discuss irAE treatment, particularly emphasizing how molecular knowledge is changing the current treatment paradigm.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Humanos , Antineoplásicos Imunológicos/uso terapêutico , Autoimunidade , Neoplasias/patologia , Imunoterapia , Biologia
14.
Lancet Microbe ; 5(3): e247-e260, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280387

RESUMO

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS: We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS: We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION: Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING: Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.


Assuntos
COVID-19 , Armadilhas Extracelulares , Aspergilose Pulmonar , Adulto , Humanos , Feminino , Masculino , Estudos Retrospectivos , Antifúngicos , Estado Terminal , COVID-19/complicações , Sistema Respiratório , Análise de Sequência de RNA
15.
Cancer Treat Res Commun ; 36: 100727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37307680

RESUMO

INTRODUCTION: Until recently, the treatment for patients with locally advanced unresectable stage III non-small cell lung cancer (NSCLC) was combined chemoradiotherapy (CRT), delivered either concurrently (cCRT) or sequentially (sCRT). There is limited data on the outcomes and safety of CRT in a real-world setting. We conducted a real-world cohort analysis of our Leuven Lung Cancer Group (LLCG) experience with CRT for unresectable stage III NSCLC, prior to the era of consolidation treatment with immunotherapy. PATIENTS AND METHODS: In this observational, real-world monocentric cohort study, a total of 163 consecutive patients were included. They were diagnosed with unresectable stage III primary NSCLC and treated with CRT between January 1st, 2011, and December 31st, 2018. Patient and tumor characteristics, treatment patterns, toxicity, and primary outcome parameters such as PFS, OS and pattern of relapse were captured. RESULTS: CRT was concurrent in 108 patients, sequential in 55. Overall tolerability was good, with two thirds of patients without severe adverse events such as severe febrile neutropenia, ≥ grade 2 pneumonitis, or ≥ grade 3 esophagitis. All registered adverse events were more frequent in the cCRT group compared to the sCRT group. Median PFS was 13.2 months (95% CI 10.3-16.2), median OS was 23.3 months (95% CI 18.3-28.0), with a 47.5% survival rate at 2 years, and 29.4% at five years. CONCLUSIONS: This study provides a clinically relevant benchmark on the outcomes and toxicity of concurrent and sequential chemoradiotherapy in unresectable stage III NSCLC in a real-world setting in the pre-PACIFIC era.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Estudos de Coortes , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Estudos Observacionais como Assunto
16.
Eur J Cancer ; 187: 36-57, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116287

RESUMO

INTRODUCTION: The use of immune checkpoint inhibitors (ICIs) in cancer immunotherapy has shown increased overall survival in a wide range of cancer types with the associated risk of developing severe immune-mediated adverse events, commonly involving the gastrointestinal tract. AIM: The aim of this position statement is to provide an updated practice advice to the gastroenterologists and oncologists on the diagnosis and management of ICI-induced gastrointestinal toxicity. METHODOLOGY: The evidence reviewed in this paper includes a comprehensive search strategy of English language publications. Consensus was reached using a three-round modified Delphi methodology and approved by the members of the Belgian Inflammatory Bowel Disease Research and Development Group (BIRD), Belgian Society of Medical Oncology (BSMO), Belgian group of Digestive Oncology (BGDO), and Belgian Respiratory Society (BeRS). CONCLUSIONS: The management of ICI-induced colitis requires an early multidisciplinary approach. A broad initial assessment is necessary (clinical presentation, laboratory markers, endoscopic and histologic examination) to confirm the diagnosis. Criteria for hospitalisation, management of ICIs, and initial endoscopic assessment are proposed. Even if corticosteroids are still considered the first-line therapy, biologics are recommended as an escalation therapy and as early treatment in patients with high-risk endoscopic findings.


Assuntos
Colite , Neoplasias , Humanos , Colite/induzido quimicamente , Colite/diagnóstico , Colite/terapia , Consenso , Técnica Delphi , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico
17.
EBioMedicine ; 92: 104608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37224768

RESUMO

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Assuntos
COVID-19 , Humanos , Pulmão , Estudos Prospectivos , RNA Viral , SARS-CoV-2 , RNA Subgenômico
18.
Oncoimmunology ; 12(1): 2219591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284695

RESUMO

Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Morte Celular , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Citocinas/metabolismo
19.
Cardiovasc Res ; 119(2): 520-535, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35998078

RESUMO

AIMS: Severe acute respiratory syndrome coronavirus-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage, and perturbed haemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single-nucleus RNA-sequencing on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs, and 12 controls. The vascular fraction, comprising 38 794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137 746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns, and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Síndrome do Desconforto Respiratório , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transcriptoma
20.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104043

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Animais , Camundongos , COVID-19/genética , COVID-19/patologia , Armadilhas Extracelulares/metabolismo , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/metabolismo , Pulmão/patologia , Complemento C5a/genética , Complemento C5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA