Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(40): 16354-16361, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37739403

RESUMO

This work investigates the effect of copper substitution on the magnetic properties of SmCo5 thin films synthesized by molecular beam epitaxy. A series of thin films with varying concentrations of Cu were grown under otherwise identical conditions to disentangle structural and compositional effects on the magnetic behavior. The combined experimental and theoretical studies show that Cu substitution at the Co3g sites not only stabilizes the formation of the SmCo5 structure but also enhances magnetic anisotropy and coercivity. Density functional theory calculations indicate that Sm(Co4Cu3g)5 possesses a higher single-ion anisotropy as compared to pure SmCo5. In addition, X-ray magnetic circular dichroism reveals that Cu substitution causes an increasing decoupling of the Sm 4f and Co 3d moments. Scanning transmission electron microscopy confirms predominantly SmCo5 phase formation and reveals nanoscale inhomogeneities in the Cu and Co distribution. Our study based on thin film model systems and advanced characterization as well as modeling reveals novel aspects of the complex interplay of intrinsic and extrinsic contributions to magnetic hysteresis in rare-earth-based magnets, i.e., the combination of increased intrinsic anisotropy due to Cu substitution and the extrinsic effect of inhomogeneous elemental distribution of Cu and Co.

2.
Nano Lett ; 19(10): 7246-7255, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525983

RESUMO

Magnetic skyrmions are topological solitons promising for applications as encoders for digital information. A number of different skyrmion-based memory devices have been recently proposed. In order to demonstrate a viable skyrmion-based memory device, it is necessary to reliably and reproducibly nucleate, displace, detect, and delete the magnetic skyrmions, possibly in the absence of external applied magnetic fields, which would needlessly complicate the device design. While the skyrmion displacement and detection have both been thoroughly investigated, much less attention has been dedicated to the study of the skyrmion nucleation process and its sub-nanosecond dynamics. In this study, we investigate the nucleation of magnetic skyrmions from a dedicated nanoengineered injector, demonstrating the reliable magnetic skyrmion nucleation at the remnant state. The sub-nanosecond dynamics of the skyrmion nucleation process were also investigated, allowing us to shine light on the physical processes driving the nucleation.

3.
Ultramicroscopy ; 233: 113392, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35016129

RESUMO

Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality. Here, we avoid these drawbacks by combining a delay line detector with continuous illumination in a transmission electron microscope. We visualize the gyration of a magnetic vortex core in real space and show that magnetization dynamics up to frequencies of 2.3 GHz can be resolved with down to ∼122ps temporal resolution by studying the interaction of an electron beam with a microwave magnetic field. In the future, this approach promises to provide access to resonant dynamics by combining high spatial resolution with sub-ns temporal resolution.

4.
J Vis Exp ; (166)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33346200

RESUMO

Off-axis electron holography is a powerful technique that involves the formation of an interference pattern in a transmission electron microscope (TEM) by overlapping two parts of an electron wave, one of which has passed through a region of interest on a specimen and the other is a reference wave. The resulting off-axis electron hologram can be analyzed digitally to recover the phase difference between the two parts of the electron wave, which can then be interpreted to provide quantitative information about local variations in electrostatic potential and magnetic induction within and around the specimen. Off-axis electron holograms can be recorded while a specimen is subjected to external stimuli such as elevated or reduced temperature, voltage, or light. The protocol that is presented here describes the practical steps that are required to record, analyze, and interpret off-axis electron holograms, with a primary focus on the measurement of magnetic fields within and around nanoscale materials and devices. Presented here are the steps involved in the recording, analysis, and processing of off-axis electron holograms, as well as the reconstruction and interpretation of phase images and visualization of the results. Also discussed are the need for optimization of the specimen geometry, the electron optical configuration of the microscope, and the electron hologram acquisition parameters, as well as the need for the use of information from multiple holograms to extract the desired magnetic contributions from the recorded signal. The steps are illustrated through a study of specimens of B20-type FeGe, which contain magnetic skyrmions and were prepared with focused ion beams (FIBs). Prospects for the future development of the technique are discussed.


Assuntos
Elétrons , Holografia , Campos Magnéticos , Microscopia Eletrônica de Transmissão/instrumentação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA