Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1858(4): 733-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26724207

RESUMO

Viral ion channels or viroporins are short membrane proteins that participate in wide-ranging functions including virus replication and entry, assembly, and virus release. One such viroporin is the 81 amino acid residue Vpu protein derived from HIV-1. This protein consists of one transmembrane (TM) and two cytoplasmic helical domains, the former of which oligomerises to form cation-selective ion channels. In this study, we investigate the binding properties of amiloride compounds to Vpu embedded into liposomes using surface plasmon resonance (SPR). We explore the Vpu ion channel inhibitor, hexamethylene amiloride (HMA), as a molecular tool to examine the potential interactive role of key TM residues, Trp23, Ser24, and Glu29, in terms of positioning of these residues on the channel pore and the orientation of its constituent helices. The study provides experimental support that a direct interaction between Ser24 and HMA occurs and that this residue is most likely located in the channel pore. Mutation of Trp23 does not impact HMA affinity suggesting no direct involvement in binding and that this residue is lipid facing. These findings indicate that small molecules such as amilorides are capable of specifically interacting with Vpu ion channels. Although a correlation between ion channel and functional activity cannot be dismissed, alternative mechanisms involving protein-protein interactions may play an important role in the efficacy of these compounds.


Assuntos
HIV-1/química , Proteínas do Vírus da Imunodeficiência Humana/química , Lipossomos/química , Proteínas Virais Reguladoras e Acessórias/química , Amilorida/farmacologia , Sequência de Aminoácidos/efeitos dos fármacos , HIV-1/patogenicidade , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Mutação , Ressonância de Plasmônio de Superfície , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/efeitos dos fármacos
2.
FASEB J ; 26(12): 5049-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22962299

RESUMO

Excitation-contraction (EC) coupling in skeletal muscle depends on protein interactions between the transverse tubule dihydropyridine receptor (DHPR) voltage sensor and intracellular ryanodine receptor (RyR1) calcium release channel. We present novel data showing that the C-terminal 35 residues of the ß(1a) subunit adopt a nascent α-helix in which 3 hydrophobic residues align to form a hydrophobic surface that binds to RyR1 isolated from rabbit skeletal muscle. Mutation of the hydrophobic residues (L496, L500, W503) in peptide ß(1a)V490-M524, corresponding to the C-terminal 35 residues of ß(1a), reduced peptide binding to RyR1 to 15.2 ± 7.1% and prevented the 2.9 ± 0.2-fold activation of RyR1 by 10 nM wild-type peptide. An upstream hydrophobic heptad repeat implicated in ß(1a) binding to RyR1 does not contribute to RyR1 activation. Wild-type ß(1a)A474-A508 peptide (10 nM), containing heptad repeat and hydrophobic surface residues, increased RyR1 activity by 2.3 ± 0.2- and 2.2 ± 0.3-fold after mutation of the heptad repeat residues. We conclude that specific hydrophobic surface residues in the 35 residue ß(1a) C-terminus bind to RyR1 and increase channel activity in lipid bilayers and thus may support skeletal EC coupling.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , Canais de Cálcio Tipo L/genética , Acoplamento Excitação-Contração , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Homologia de Sequência de Aminoácidos , Propriedades de Superfície
3.
PLoS One ; 6(3): e17864, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21455499

RESUMO

It has recently emerged that glutathione transferase enzymes (GSTs) and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C) is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.


Assuntos
Glutationa Transferase/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Dicroísmo Circular , Citometria de Fluxo , Fluorometria , Glutationa Transferase/genética , Humanos , Camundongos , Microscopia Confocal , Estrutura Secundária de Proteína , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA