Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5438-5450, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716860

RESUMO

In recent years, several noncanonical RNA caps derived from cofactors and metabolites have been identified. Purine-containing RNA caps have been extensively studied, with multiple decapping enzymes identified and efficient capture and sequencing protocols developed for nicotinamide adenine dinucleotide (NAD)-RNA, which allowed for a stepwise elucidation of capping functions. Despite being identified as an abundant noncanonical RNA-cap, UDP-sugar-capped RNA remains poorly understood, which is partly due to its complex in vitro preparation. Here, we describe a scalable synthesis of sugar-capped uridine-guanosine dinucleotides from readily available protected building blocks and their enzymatic conversion into several cell wall precursor-capped dinucleotides. We employed these capped dinucleotides in T7 RNA polymerase-catalyzed in vitro transcription reactions to efficiently generate RNAs capped with uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), its N-azidoacetyl derivative UDP-GlcNAz, and various cell wall precursors. We furthermore identified four enzymes capable of processing UDP-GlcNAc-capped RNA in vitro: MurA, MurB and MurC from Escherichia coli can sequentially modify the sugar-cap structure and were used to introduce a bioorthogonal, clickable moiety, and the human Nudix hydrolase Nudt5 was shown to efficiently decap UDP-GlcNAc-RNA. Our findings underscore the importance of efficient synthetic methods for capped model RNAs. Additionally, we provide useful enzymatic tools that could be utilized in the development and application of UDP-GlcNAc capture and sequencing protocols. Such protocols are essential for deepening our understanding of the widespread yet enigmatic GlcNAc modification of RNA and its physiological significance.


Assuntos
Capuzes de RNA , Uridina Difosfato N-Acetilglicosamina , Uridina Difosfato N-Acetilglicosamina/metabolismo , Capuzes de RNA/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/química , Humanos , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas Virais
2.
Ann Neurol ; 96(1): 46-60, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38624158

RESUMO

OBJECTIVE: Recent evidence shows that during slow-wave sleep (SWS), the brain is cleared from potentially toxic metabolites, such as the amyloid-beta protein. Poor sleep or elevated cortisol levels can worsen amyloid-beta clearance, potentially leading to the formation of amyloid plaques, a neuropathological hallmark of Alzheimer disease. Here, we explored how nocturnal neural and endocrine activity affects amyloid-beta fluctuations in the peripheral blood. METHODS: We acquired simultaneous polysomnography and all-night blood sampling in 60 healthy volunteers aged 20-68 years. Nocturnal plasma concentrations of amyloid-beta-40, amyloid-beta-42, cortisol, and growth hormone were assessed every 20 minutes. Amyloid-beta fluctuations were modeled with sleep stages, (non)oscillatory power, and hormones as predictors while controlling for age and participant-specific random effects. RESULTS: Amyloid-beta-40 and amyloid-beta-42 levels correlated positively with growth hormone concentrations, SWS proportion, and slow-wave (0.3-4Hz) oscillatory and high-band (30-48Hz) nonoscillatory power, but negatively with cortisol concentrations and rapid eye movement sleep (REM) proportion measured 40-100 minutes previously (all t values > |3|, p values < 0.003). Older participants showed higher amyloid-beta-40 levels. INTERPRETATION: Slow-wave oscillations are associated with higher plasma amyloid-beta levels, whereas REM sleep is related to decreased amyloid-beta plasma levels, possibly representing changes in central amyloid-beta production or clearance. Strong associations between cortisol, growth hormone, and amyloid-beta presumably reflect the sleep-regulating role of the corresponding releasing hormones. A positive association between age and amyloid-beta-40 may indicate that peripheral clearance becomes less efficient with age. ANN NEUROL 2024;96:46-60.


Assuntos
Peptídeos beta-Amiloides , Polissonografia , Sono REM , Sono de Ondas Lentas , Humanos , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Adulto , Masculino , Idoso , Feminino , Sono de Ondas Lentas/fisiologia , Adulto Jovem , Sono REM/fisiologia , Hidrocortisona/sangue , Fragmentos de Peptídeos/sangue
3.
Neurobiol Dis ; 190: 106378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103701

RESUMO

Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.


Assuntos
Doença de Alzheimer , Consolidação da Memória , Humanos , Consolidação da Memória/fisiologia , Polissonografia , Sono/fisiologia , Memória/fisiologia , Transtornos da Memória/etiologia
4.
Eur J Neurosci ; 59(5): 948-965, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328991

RESUMO

Citizen science allows the public to participate in various stages of scientific research, including study design, data acquisition, and data analysis. Citizen science has a long history in several fields of the natural sciences, and with recent developments in wearable technology, neuroscience has also become more accessible to citizen scientists. This development was largely driven by the influx of minimal sensing systems in the consumer market, allowing more do-it-yourself (DIY) and quantified-self (QS) investigations of the human brain. While most subfields of neuroscience require sophisticated monitoring devices and laboratories, the study of sleep characteristics can be performed at home with relevant noninvasive consumer devices. The strong influence of sleep quality on waking life and the accessibility of devices to measure sleep are two primary reasons citizen scientists have widely embraced sleep research. Their involvement has evolved from solely contributing to data collection to engaging in more collaborative or autonomous approaches, such as instigating ideas, formulating research inquiries, designing research protocols and methodology, acting upon their findings, and disseminating results. In this article, we introduce the emerging field of citizen neuroscience, illustrating examples of such projects in sleep research. We then provide overviews of the wearable technologies for tracking human neurophysiology and various open-source software used to analyse them. Finally, we discuss the opportunities and challenges in citizen neuroscience projects and suggest how to improve the study of the human brain outside the laboratory.


Assuntos
Ciência do Cidadão , Dispositivos Eletrônicos Vestíveis , Humanos , Software , Ecossistema , Encéfalo
5.
J Sleep Res ; 33(1): e13897, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37020309

RESUMO

The nature and degree of objective sleep impairments in insomnia disorder remain unclear. This issue is complicated further by potential changes in sleep architecture on the first compared with subsequent nights in the laboratory. Evidence regarding differential first-night effects in people with insomnia disorder and controls is mixed. Here, we aimed to further characterize insomnia- and night-related differences in sleep architecture. A comprehensive set of 26 sleep variables was derived from two consecutive nights of polysomnography in 61 age-matched patients with insomnia and 61 good sleeper controls. People with insomnia expressed consistently poorer sleep than controls on several variables during both nights. While poorer sleep during the first night was observed in both groups, there were qualitative differences regarding the specific sleep variables expressing a first-night effect. Short sleep (total sleep time < 6 hr) was more likely during the first night and in insomnia, although approximately 40% of patients with insomnia presenting with short sleep on night 1 no longer met this criterion on night 2, which is important given the notion of short-sleeping insomnia as a robust subtype.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Humanos , Distúrbios do Início e da Manutenção do Sono/complicações , Sono , Polissonografia , Laboratórios
6.
Hum Brain Mapp ; 43(13): 3923-3943, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488512

RESUMO

After experiences are encoded, post-encoding reactivations during sleep have been proposed to mediate long-term memory consolidation. Spindle-slow oscillation coupling during NREM sleep is a candidate mechanism through which a hippocampal-cortical dialogue may strengthen a newly formed memory engram. Here, we investigated the role of fast spindle- and slow spindle-slow oscillation coupling in the consolidation of spatial memory in humans with a virtual watermaze task involving allocentric and egocentric learning strategies. Furthermore, we analyzed how resting-state functional connectivity evolved across learning, consolidation, and retrieval of this task using a data-driven approach. Our results show task-related connectivity changes in the executive control network, the default mode network, and the hippocampal network at post-task rest. The hippocampal network could further be divided into two subnetworks of which only one showed modulation by sleep. Decreased functional connectivity in this subnetwork was associated with higher spindle-slow oscillation coupling power, which was also related to better memory performance at test. Overall, this study contributes to a more holistic understanding of the functional resting-state networks and the mechanisms during sleep associated to spatial memory consolidation.


Assuntos
Eletroencefalografia , Consolidação da Memória , Eletroencefalografia/métodos , Hipocampo/diagnóstico por imagem , Humanos , Sono , Memória Espacial
7.
Neuroimage ; 224: 117452, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059050

RESUMO

Sleep spindles are crucial to memory consolidation. Cortical gamma oscillations (30-100 Hz) are considered to reflect processing of memory in local cortical networks. The temporal and regulatory relationship between spindles and gamma activity might therefore provide clues into how sleep strengthens cortical memory representations. Here, combining EEG with MEG recordings during sleep in healthy humans (n = 12), we investigated the temporal relationships of cortical gamma band activity, always measured by MEG, during fast (12-16 Hz) and slow (8-12 Hz) sleep spindles detected in the EEG or MEG. Time-frequency distributions did not show a consistent coupling of gamma to the spindle oscillation, although activity in the low gamma (30-40 Hz) and neighboring beta range (<30 Hz) was generally increased during spindles. However, more fine-grained analyses of cross-frequency interactions revealed that both low and high gamma power (30-100 Hz) was coupled to the phase of slow and fast EEG spindles, importantly, with this coupling at a fixed phase only for the oscillations within an individual spindle, but with variable phase across spindles. We did not observe any coupling of gamma activity for spindles detected solely in the MEG and not in parallel EEG recordings, raising the possibility that these are more local spindles of different quality. Similar to fast spindle activity, low gamma band power followed a ~0.025 Hz infraslow rhythm during sleep whose frequency, however, was significantly faster than that of spindle activity. Our findings suggest a general function of fast and slow spindles that by spanning larger cortical networks might serve to synchronize gamma band activity occurring in more local but distributed networks. Thereby, spindles might help linking local memory processing between distributed networks.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia , Ritmo Gama/fisiologia , Magnetoencefalografia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Masculino , Consolidação da Memória/fisiologia , Polissonografia , Sono/fisiologia , Fases do Sono/fisiologia , Adulto Jovem
8.
Conscious Cogn ; 84: 102988, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32768920

RESUMO

Lucid dreaming-the phenomenon of experiencing waking levels of self-reflection within one's dreams-is associated with more wake-like levels of neural activation in prefrontal brain regions. In addition, alternating periods of wakefulness and sleep might increase the likelihood of experiencing a lucid dream. Here we investigate the association between sleep fragmentation and lucid dreaming, with a multi-centre study encompassing four different investigations into subjective and objective measures of sleep fragmentation, nocturnal awakenings, sleep quality and polyphasic sleep schedules. Results across these four studies provide a more nuanced picture into the purported connection between sleep fragmentation and lucid dreaming: While self-assessed numbers of awakenings, polyphasic sleep and physiologically validated wake-REM sleep transitions were associated with lucid dreaming, neither self-assessed sleep quality, nor physiologically validated numbers of awakenings were. We discuss these results, and their underlying neural mechanisms, within the general question of whether sleep fragmentation and lucid dreaming share a causal link.


Assuntos
Sonhos/fisiologia , Metacognição/fisiologia , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Vigília/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Neurosci ; 37(50): 12238-12246, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29118106

RESUMO

Replay of hippocampal neural representations during sleep is thought to promote systems consolidation of declarative memory. How this reprocessing of memory during sleep affects the hippocampal representation itself, is unclear. Here we tested hippocampal stimulus processing (i.e., pattern separation) before and after periods of sleep and wakefulness in humans (female and male participants). Pattern separation deteriorated across the wake period but remained stable across sleep (p = 0.013) with this sleep-wake difference being most pronounced for stimuli with low similarity to targets (p = 0.006). Stimuli with the highest similarity showed a reversed pattern with reduced pattern separation performance after sleep (p = 0.038). Pattern separation performance was positively correlated with sleep spindle density, slow oscillation density, and theta power phase-locked to slow oscillations. Sleep, presumably by neural memory replay, shapes hippocampal representations and enhances computations of pattern separation to subsequent presentation of similar stimuli.SIGNIFICANCE STATEMENT The consolidation of hippocampus-dependent memories is causally related to reactivation during sleep of previously encoded representations. Here, we show that reactivation-based consolidation processes during sleep shape the hippocampal representation itself. We studied the effect of sleep and wakefulness on pattern separation (i.e., orthogonalization of similar representations) and completion performance (i.e., recall of a memory in light of noisy input) that are essential cognitive elements of encoding and retrieval of information by the hippocampus. Our results demonstrate that pattern separation was stabilized after sleep but diminished after wakefulness. We further showed that pattern separation was related to EEG oscillatory parameters of non-REM sleep serving as markers of sleep-dependent memory consolidation and hippocampal reactivation.


Assuntos
Discriminação Psicológica/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Sono/fisiologia , Adulto , Relógios Biológicos , Estudos Cross-Over , Eletroencefalografia , Feminino , Humanos , Masculino , Memória Episódica , Memória de Curto Prazo/fisiologia , Estimulação Luminosa , Polissonografia , Distribuição Aleatória , Ritmo Teta , Fatores de Tempo , Vigília/fisiologia , Adulto Jovem
10.
J Biomol NMR ; 71(3): 129-140, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808436

RESUMO

In recent years, we developed a toolbox of heavy isotope containing compounds, which serve as metabolic amino acid precursors in the E. coli-based overexpression of aromatic residue labeled proteins. Our labeling techniques show excellent results both in terms of selectivity and isotope incorporation levels. They are additionally distinguished by low sample production costs and meet the economic demands to further implement protein NMR spectroscopy as a routinely used method in drug development processes. Different isotopologues allow for the assembly of optimized protein samples, which fulfill the requirements of various NMR experiments to elucidate protein structures, analyze conformational dynamics, or probe interaction surfaces. In the present article, we want to summarize the precursors we developed so far and give examples of their special value in the probing of protein-ligand interaction.


Assuntos
Aminoácidos Aromáticos/química , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Aminoácidos Aromáticos/metabolismo , Animais , Escherichia coli/metabolismo , Humanos , Ligantes , Sondas Moleculares , Proteínas/química
11.
Child Dev ; 89(5): 1720-1734, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28594100

RESUMO

Abilities to encode and remember events in their spatiotemporal context (episodic memory) rely on brain regions that mature late during childhood and are supported by sleep. We compared the temporal dynamics of episodic memory formation and the role of sleep in this process between 62 children (8-12 years) and 57 adults (18-37 years). Subjects recalled "what-where-when" memories after a short 1-hr retention interval or after a long 10.5-hr interval containing either nocturnal sleep or daytime wakefulness. Although children showed diminished recall of episodes after 1 hr, possibly resulting from inferior encoding, unlike adults, they showed no further decrease in recall after 10.5 hr. In both age groups, episodic memory benefitted from sleep. However, children's more effective offline retention was unrelated to sleep.


Assuntos
Consolidação da Memória , Memória Episódica , Rememoração Mental , Adulto , Criança , Feminino , Humanos , Masculino , Memória de Longo Prazo , Sono , Fatores de Tempo , Adulto Jovem
12.
J Biomol NMR ; 69(1): 13-22, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28861670

RESUMO

The application of metabolic precursors for selective stable isotope labeling of aromatic residues in cell-based protein overexpression has already resulted in numerous NMR probes to study the structural and dynamic characteristics of proteins. With anthranilic acid, we present the structurally simplest precursor for exclusive tryptophan side chain labeling. A synthetic route to 13C, 2H isotopologues allows the installation of isolated 13C-1H spin systems in the indole ring of tryptophan, representing a versatile tool to investigate side chain motion using relaxation-based experiments without the loss of magnetization due to strong 1JCC and weaker 2JCH scalar couplings, as well as dipolar interactions with remote hydrogens. In this article, we want to introduce this novel precursor in the context of hitherto existing techniques of in vivo aromatic residue labeling.


Assuntos
Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , ortoaminobenzoatos/química , Triptofano/química
13.
Neuroimage ; 134: 607-616, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27103135

RESUMO

The <1Hz slow oscillation (SO) and spindles are hallmarks of mammalian non-rapid eye movement and slow wave sleep. Spindle activity occurring phase-locked to the SO is considered a candidate mediator of memory consolidation during sleep. We used source localization of magnetoencephalographic (MEG) and electroencephalographic (EEG) recordings from 11 sleeping human subjects for an in-depth analysis of the temporal and spatial properties of sleep spindles co-occurring with SOs. Slow oscillations and spindles were identified in the EEG and related to the MEG signal, providing enhanced spatial resolution. In the temporal domain, we confirmed a phase-locking of classical 12-15Hz fast spindle activity to the depolarizing SO up-state and of 9-12Hz slow spindle activity to the up-to-down-state transition of the SO. In the spatial domain, we show a broad spread of spindle activity, with less distinct anterior-posterior separation of fast and slow spindles than commonly seen in the EEG. We further tested a prediction of current memory consolidation models, namely the existence of a spatial bias of SOs over sleep spindles as a mechanism to promote localized neuronal synchronization and plasticity. In contrast to that prediction, a comparison of SOs dominating over the left vs. right hemisphere did not reveal any signs of a concurrent lateralization of spindle activity co-occurring with these SOs. Our data are consistent with the concept of the neocortical SO exerting top-down control over thalamic spindle generation. However, they call into question the notion that SOs locally coordinate spindles and thereby inform spindle-related memory processing.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiologia , Sincronização Cortical , Fases do Sono , Adulto , Eletroencefalografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Consolidação da Memória/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
14.
Cereb Cortex ; 25(11): 4610-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26048955

RESUMO

Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization.


Assuntos
Desempenho Psicomotor/fisiologia , Reflexo/fisiologia , Privação do Sono/fisiopatologia , Adulto , Comportamento de Escolha , Eletroculografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Adulto Jovem
15.
Learn Mem ; 21(4): 190-8, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24634354

RESUMO

Research in rats using preferences during exploration as a measure of memory has indicated that sleep is important for the consolidation of episodic-like memory, i.e., memory for an event bound into specific spatio-temporal context. How these findings relate to human episodic memory is unclear. We used spontaneous preferences during visual exploration and verbal recall as, respectively, implicit and explicit measures of memory, to study effects of sleep on episodic memory consolidation in humans. During encoding before 10-h retention intervals that covered nighttime sleep or daytime wakefulness, two groups of young adults were presented with two episodes that were 1-h apart. Each episode entailed a spatial configuration of four different faces in a 3 × 3 grid of locations. After the retention interval, implicit spatio-temporal recall performance was assessed by eye-tracking visual exploration of another configuration of four faces of which two were from the first and second episode, respectively; of the two faces one was presented at the same location as during encoding and the other at another location. Afterward explicit verbal recall was assessed. Measures of implicit and explicit episodic memory retention were positively correlated (r = 0.57, P < 0.01), and were both better after nighttime sleep than daytime wakefulness (P < 0.05). In the sleep group, implicit episodic memory recall was associated with increased fast spindles during nonrapid eye movement (NonREM) sleep (r = 0.62, P < 0.05). Together with concordant observations in rats our results indicate that consolidation of genuinely episodic memory benefits from sleep.


Assuntos
Encéfalo/fisiologia , Memória Episódica , Sono/fisiologia , Ritmo Circadiano , Eletroencefalografia , Medições dos Movimentos Oculares , Face , Feminino , Humanos , Masculino , Rememoração Mental/fisiologia , Testes Neuropsicológicos , Estimulação Luminosa , Polissonografia , Fases do Sono/fisiologia , Fala , Percepção da Fala/fisiologia , Fatores de Tempo , Percepção Visual/fisiologia , Vigília , Adulto Jovem
16.
Sleep ; 47(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38124288

RESUMO

STUDY OBJECTIVES: Voluntary sleep restriction is a common phenomenon in industrialized societies aiming to increase time spent awake and thus productivity. We explored how restricting sleep to a radically polyphasic schedule affects neural, cognitive, and endocrine characteristics. METHODS: Ten young healthy participants were restricted to one 20-minute nap opportunity at the end of every 4 hours (i.e. six sleep episodes per 24 hours) without any extended core sleep window, which resulted in a cumulative sleep amount of just 2 hours per day (i.e. ~20 minutes per bout). RESULTS: All but one participant terminated this schedule during the first month. The remaining participant (a 25-year-old male) succeeded in adhering to a polyphasic schedule for five out of the eight planned weeks. Cognitive and psychiatric measures showed modest changes during polyphasic as compared to monophasic sleep, while in-blood cortisol or melatonin release patterns and amounts were apparently unaltered. In contrast, growth hormone release was almost entirely abolished (>95% decrease), with the residual release showing a considerably changed polyphasic secretional pattern. CONCLUSIONS: Even though the study was initiated by volunteers with exceptional intrinsic motivation and commitment, none of them could tolerate the intended 8 weeks of the polyphasic schedule. Considering the decreased vigilance, abolished growth hormone release, and neurophysiological sleep changes observed, it is doubtful that radically polyphasic sleep schedules can subserve the different functions of sleep to a sufficient degree.


Assuntos
Hormônio do Crescimento Humano , Masculino , Humanos , Adulto , Polissonografia , Sono/fisiologia , Vigília/fisiologia , Hormônio do Crescimento
17.
Biol Psychiatry Glob Open Sci ; 3(4): 1021-1029, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881583

RESUMO

Background: In major depressive disorder (MDD), patients often express subjective sleep complaints, while polysomnographic studies report only subtle alterations of the electroencephalographic signal. We hypothesize that differentiating the signal into its oscillatory and aperiodic components may bring new insights into our understanding of sleep abnormalities in MDD. Specifically, we investigated aperiodic neural activity during sleep and its relationships with sleep architecture, depression severity, and responsivity to antidepressant treatment. Methods: Polysomnography was recorded in 38 patients with MDD (in unmedicated and 7-day-medicated states) and 38 age-matched healthy control subjects (N= 76). The aperiodic power component was calculated using irregularly resampled auto-spectral analysis. Depression severity was assessed with the Hamilton Depression Rating Scale. We replicated the analysis using 2 independently collected datasets of medicated patients and control subjects (N = 60 and N = 80, respectively). Results: Unmedicated patients showed flatter aperiodic slopes compared with control subjects during non-rapid eye movement (non-REM) stage 2 sleep (p = .009). Medicated patients showed flatter aperiodic slopes compared with their earlier unmedicated state (p values < .001) and control subjects during all sleep stages (p values < .03). In medicated patients, flatter aperiodic slopes during non-REM sleep were linked to the higher proportion of N1, lower proportion of REM, delayed onset of N3 and REM, and shorter total sleep time. Conclusions: Flatter slopes of aperiodic electroencephalographic power may reflect noisier neural activity due to increased excitation-to-inhibition balance, representing a new disease-relevant feature of sleep in MDD.

18.
Neurosci Biobehav Rev ; 153: 105379, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660843

RESUMO

Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.

19.
Sleep ; 46(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433753

RESUMO

Sleep plays a crucial role in memory consolidation. Recent data in rodents and young adults revealed that fast spindle band power fluctuates at a 0.02-Hz infraslow scale during non-rapid eye movement (NREM) sleep. These fluctuations result from a periodic temporal clustering of spindles and may modulate sleep maintenance and memory consolidation. With age, sleep undergoes substantial changes but age-related changes in spindle clustering have never been investigated. Polysomnography data were collected in 147 older (mean age ±â€…SD: 69.3 ±â€…4.1 years) and 32 young-middle aged (34.5 ±â€…10.9 years) adults. Sleep-dependent memory consolidation was assessed in a subsample of 57 older adults using a visuospatial memory task. We analyzed power fluctuations in fast spindle frequency band, detected fast spindles, and quantified their clustering during the night separating encoding and retrieval. Fast spindle band power fluctuated at a 0.02-Hz infraslow scale in young-middle aged and older adults. However, the proportion of clustered fast spindles decreased non-linearly with age (p < .001). This effect was not mediated by NREM sleep fragmentation. The clustering level of fast spindles modulated their characteristics (p < .001). Finally, the mean size of spindle clusters was positively associated with memory consolidation (p = .036) and negatively with NREM sleep micro-arousal density (p = .033). These results suggest that clusters of fast spindles may constitute stable sleep periods promoting off-line processes such as memory consolidation. We emphasize the relevance of considering spindle dynamics, obviously impaired during aging, to understand the impact of age-related sleep changes on memory. Clinical Trial Information: Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL.doc in supplementary material. Registration: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Movimentos Oculares , Sono , Polissonografia/métodos , Eletroencefalografia
20.
Neuroimage Clin ; 36: 103275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451376

RESUMO

Disturbed sleep is a key symptom in major depressive disorder (MDD). REM sleep alterations are well described in the current literature, but little is known about non-REM sleep alterations. Additionally, sleep disturbances relate to a variety of cognitive symptoms in MDD, but which features of non-REM sleep EEG contribute to this, remains unknown. We comprehensively analyzed non-REM sleep EEG features in two central channels in three independently collected datasets (N = 284 recordings of 216 participants). This exploratory and descriptive study included MDD patients with a broad age range, varying duration and severity of depression, unmedicated or medicated, age- and gender-matched to healthy controls. We explored changes in sleep architecture including sleep stages and cycles, spectral power, sleep spindles, slow waves (SW), and SW-spindle coupling. Next, we analyzed the association of these sleep features with acute measures of depression severity and overnight consolidation of procedural memory. Overall, no major systematic alterations in non-REM sleep architecture were found in patients compared to controls. For the microstructure of non-REM sleep, we observed a higher spindle amplitude in unmedicated patients compared to controls, and after the start of antidepressant medication longer SWs with lower amplitude and a more dispersed SW-spindle coupling. In addition, long-term, but not short-term medication seemed to lower spindle density. Overnight procedural memory consolidation was impaired in medicated patients and associated with lower sleep spindle density. Our results suggest that alterations of non-REM sleep EEG in MDD might be more subtle than previously reported. We discuss these findings in the context of antidepressant medication intake and age.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/complicações , Polissonografia , Fases do Sono , Sono , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA