Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 12: e17457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854793

RESUMO

For many species, the relationship between space use and diet composition is complex, with individuals adopting varying space use strategies such as territoriality to facilitate resource acquisition. Coyotes (Canis latrans) exhibit two disparate types of space use; defending mutually exclusive territories (residents) or moving nomadically across landscapes (transients). Resident coyotes have increased access to familiar food resources, thus improved foraging opportunities to compensate for the energetic costs of defending territories. Conversely, transients do not defend territories and are able to redirect energetic costs of territorial defense towards extensive movements in search of mates and breeding opportunities. These differences in space use attributed to different behavioral strategies likely influence foraging and ultimately diet composition, but these relationships have not been well studied. We investigated diet composition of resident and transient coyotes in the southeastern United States by pairing individual space use patterns with analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope values to assess diet. During 2016-2017, we monitored 41 coyotes (26 residents, 15 transients) with GPS radio-collars along the Savannah River area in the southeastern United States. We observed a canopy effect on δ13C values and little anthropogenic food in coyote diets, suggesting 13C enrichment is likely more influenced by reduced canopy cover than consumption of human foods. We also observed other land cover effects, such as agricultural cover and road density, on δ15N values as well as reduced space used by coyotes, suggesting that cover types and localized, resident-like space use can influence the degree of carnivory in coyotes. Finally, diets and niche space did not differ between resident and transient coyotes despite differences observed in the proportional contribution of potential food sources to their diets. Although our stable isotope mixing models detected differences between the diets of resident and transient coyotes, both relied mostly on mammalian prey (52.8%, SD = 15.9 for residents, 42.0%, SD = 15.6 for transients). Resident coyotes consumed more game birds (21.3%, SD = 11.6 vs 13.7%, SD = 8.8) and less fruit (10.5%, SD = 6.9 vs 21.3%, SD = 10.7) and insects (7.2%, SD = 4.7 vs 14.3%, SD = 8.5) than did transients. Our findings indicate that coyote populations fall on a feeding continuum of omnivory to carnivory in which variability in feeding strategies is influenced by land cover characteristics and space use behaviors.


Assuntos
Coiotes , Isótopos de Nitrogênio , Coiotes/fisiologia , Animais , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Carnivoridade , Dieta , Territorialidade , Sudeste dos Estados Unidos , Comportamento Alimentar/fisiologia
2.
J Environ Radioact ; 278: 107472, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38905881

RESUMO

Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway. GPS-coupled dosimeters produced empirical data to which numerical simulations of external dose using computer software were compared. Our data did not support a standing paradigm in risk analyses: Using averaged soil contaminant levels to model external dose rates conservatively overestimate the dose to individuals within a population. Following this paradigm will likely lead to misguided recommendations for risk management. The GPS-dosimetry data also demonstrated the critical importance of how modeled external dose rates are impacted by the scale at which contaminants are mapped. When contaminant mapping scales are coarse even detailed knowledge about each animal's home range was inadequate to accurately predict external dose rates. Importantly, modeled external dose rates based on a single measurement at a trap site did not correlate to actual dose rates measured on free ranging animals. These findings provide empirical data to support published concerns about inadequate dosimetry in much of the published Chernobyl and Fukushima dose-effects research. Our data indicate that a huge portion of that literature should be challenged, and that improper dosimetry remains a significant source of controversy in radiation dose-effect research.

3.
Ecol Evol ; 12(3): e8725, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356555

RESUMO

Coyotes (Canis latrans) are a highly adaptable canid species whose behavioral plasticity has allowed them to persist in a wide array of habitats throughout North America. As generalists, coyotes can alter movement patterns and change territorial strategies between residency (high site fidelity) and transiency (low site fidelity) to maximize fitness. Uncertainty remains about resident and transient coyote movement patterns and habitat use because research has reached conflicting conclusions regarding patterns of habitat use by both groups. We quantified effects of habitat on resident and transient coyote movement behavior using first passage time (FPT) analysis, which assesses recursive movement along an individual's movement path to delineate where they exhibit area-restricted search (ARS) behaviors relative to habitat attributes. We quantified monthly movement rates for 171 coyotes (76 residents and 53 transients) and then used estimated FPT values in generalized linear mixed models to quantify monthly habitat use for resident and transient coyotes. Transients had greater movement rates than residents across all months except January. Resident FPT values were positively correlated with agricultural land cover during fall and winter, but negatively correlated with agriculture during spring. Resident FPT values were also negatively correlated with developed habitats during May-August, deciduous land cover during June-August, and wetlands during September-January except November. FPT values of transient coyotes were positively correlated with developed areas throughout much of the year and near wetlands during July-September. Transient FPT values were negatively correlated with agriculture during all months except June and July. High FPT values (ARS behavior) of residents and transients were generally correlated with greater densities of edge habitat. Although we observed high individual variation in space use, our study found substantive differences in habitat use between residents and transients, providing further evidence that complexity and plasticity of coyote habitat use is influenced by territorial strategy.

4.
Environ Int ; 133(Pt A): 105152, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518927

RESUMO

Measurements of external contaminant exposures on individual wildlife are rare because of difficulties in using contaminant monitors on free-ranging animals. Most wildlife contaminant exposure data are therefore simulated with computer models. Rarely are empirical exposure data available to verify model simulations, or to test fundamental assumptions inherent in exposure assessments. We used GPS-coupled contaminant monitors to quantify external exposures to individual wolves (Canis lupus) living within the Belarus portion of Chernobyl's 30-km exclusion zone. The study provided data on animal location and contaminant exposure every 35 min for 6 months, resulting in ~6600 individual locations and 137Cs external exposure readings per wolf, representing the most robust external exposure data published to date on free ranging animals. The data provided information on variation in external exposure for each animal over time, as well as variation in external exposure among the eight wolves across the landscape of Chernobyl. The exposure data were then used to test a fundamental assumption in screening-level risk assessments, espoused in guidance documents of the U.S. Environmental Protection Agency and U.S. Department of Energy, - Mean contaminant concentrations conservatively estimate individual external exposures. We tested this assumption by comparing our empirical data to a series of simulations using the ERICA modeling tool. We found that modeled simulations of mean external exposure (10.5 mGy y-1), based on various measures of central tendency, under-predicted mean exposures measured on five of the eight wolves wearing GPS-contaminant monitors (i.e., 12.3, 26.3, 28.0, 28.8 and 35.7 mGy y-1). If under-prediction of exposure occurs for some animals, then arguably the use of averaged contaminant concentrations to predict external exposure is not as conservative as proposed by current risk assessment guidance. Thus, a risk assessor's interpretation of simulated exposures in a screening-level risk analysis might be misguided if contaminant concentrations are based on measures of central tendency. We offer three suggestions for risk assessors to consider in order to reduce the probability of underestimating exposure in a screening-level risk assessment.


Assuntos
Acidente Nuclear de Chernobyl , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Cinza Radioativa , Lobos , Animais , Radioisótopos de Césio , Simulação por Computador , Modelos Biológicos , Poluentes Radioativos/metabolismo , Ucrânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA