Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes Chromosomes Cancer ; 58(5): 284-294, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30411419

RESUMO

Common fragile sites (cFSs) represent parts of the normal chromosome structure susceptible to breakage under replication stress. Although only a small number of cFSs have been molecularly characterized, genomic damage of cFS genes appears to be critical for the development of various human diseases. In this study, we fine mapped the location of FRA14B and showed that the fragile region spans 765 kb at 14q23.3, containing the large gephyrin (GPHN) gene. The FRA14B sequence is enriched in perfect A/T>24 stretches and R-loop forming sequences (RLFS), and harbors a large palindromic motif in the core region. FRA14B instability is not only limited to lymphocytes, but also occurs in neuroblastoma and breast epithelial cells. Using array comparative genomic hybridization (CGH), we examined copy number alteration patterns within FRA14B in a panel of 180 cancer cell lines and primary tumors. Our CGH data and a survey of 1046 Cancer Cell Line Encyclopedia profiles demonstrate that focal deletions cluster within FRA14B and disrupt the genomic integrity of GPHN in approximately 5% of cancer cells. Moreover, germline CNVs (copy number variants) profiles provided by the Database of Genomic Variants and available literature suggest that germline CNVs and rare pathogenic deletions associated with neurodevelopmental disorders cluster within the core fragile region of GPHN. Overall, our data provide insight into the molecular structure of FRA14B, and identify GPHN, as a large cFS gene in the human genome, whose disruption appears to trigger various neurodevelopmental diseases.


Assuntos
Sítios Frágeis do Cromossomo , Cromossomos Humanos Par 14/genética , Deficiências do Desenvolvimento/genética , Neoplasias/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Células Cultivadas , Variações do Número de Cópias de DNA , Mutação em Linhagem Germinativa , Humanos , Proteínas de Membrana/genética
2.
Nat Cancer ; 3(4): 471-485, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35484422

RESUMO

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Assuntos
Ferroptose , Neuroblastoma , Morte Celular , Criança , Cisteína/uso terapêutico , Ferroptose/genética , Glutationa/uso terapêutico , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética
3.
Nat Genet ; 53(5): 683-693, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767450

RESUMO

Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.


Assuntos
Perfilação da Expressão Gênica , Neuroblastoma/genética , Neuroblastoma/patologia , Análise de Célula Única , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma/genética , Resultado do Tratamento
4.
Nat Cancer ; 2(1): 114-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121888

RESUMO

Half of the children diagnosed with neuroblastoma (NB) have high-risk disease, disproportionately contributing to overall childhood cancer-related deaths. In addition to recurrent gene mutations, there is increasing evidence supporting the role of epigenetic deregulation in disease pathogenesis. Yet, comprehensive cis-regulatory network descriptions from NB are lacking. Here, using genome-wide H3K27ac profiles across 60 NBs, covering the different clinical and molecular subtypes, we identified four major super-enhancer-driven epigenetic subtypes and their underlying master regulatory networks. Three of these subtypes recapitulated known clinical groups; namely, MYCN-amplified, MYCN non-amplified high-risk and MYCN non-amplified low-risk NBs. The fourth subtype, exhibiting mesenchymal characteristics, shared cellular identity with multipotent Schwann cell precursors, was induced by RAS activation and was enriched in relapsed disease. Notably, CCND1, an essential gene in NB, was regulated by both mesenchymal and adrenergic regulatory networks converging on distinct super-enhancer modules. Overall, this study reveals subtype-specific super-enhancer regulation in NBs.


Assuntos
Neuroblastoma , Criança , Humanos , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Sequências Reguladoras de Ácido Nucleico
5.
Nat Commun ; 12(1): 1269, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627664

RESUMO

Telomere maintenance by telomerase activation or alternative lengthening of telomeres (ALT) is a major determinant of poor outcome in neuroblastoma. Here, we screen for ALT in primary and relapsed neuroblastomas (n = 760) and characterize its features using multi-omics profiling. ALT-positive tumors are molecularly distinct from other neuroblastoma subtypes and enriched in a population-based clinical sequencing study cohort for relapsed cases. They display reduced ATRX/DAXX complex abundance, due to either ATRX mutations (55%) or low protein expression. The heterochromatic histone mark H3K9me3 recognized by ATRX is enriched at the telomeres of ALT-positive tumors. Notably, we find a high frequency of telomeric repeat loci with a neuroblastoma ALT-specific hotspot on chr1q42.2 and loss of the adjacent chromosomal segment forming a neo-telomere. ALT-positive neuroblastomas proliferate slowly, which is reflected by a protracted clinical course of disease. Nevertheless, children with an ALT-positive neuroblastoma have dismal outcome.


Assuntos
Sequenciamento Completo do Genoma/métodos , Western Blotting , Éxons/genética , Citometria de Fluxo , Humanos , Proteoma/metabolismo , Estudos Retrospectivos , Análise de Sequência de RNA/métodos , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA