Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Adv Funct Mater ; 34(34)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39372670

RESUMO

The biggest challenge in current isolation methods for lipid bilayer-encapsulated vesicles, such as exosomes, secretory, and synthetic vesicles, lies in the absence of a unified approach that seamlessly delivers high purity, yield, and scalability for large-scale applications. To address this gap, we have developed an innovative method that utilizes photosensitive lipid nanoprobes specifically designed for efficient isolation of vesicles and sorting them into subpopulations based on size. The photosensitive component in the probe undergoes cleavage upon exposure to light, facilitating the release of vesicles in their near-native form. We demonstrate that our method provides superior capability in isolating extracellular vesicles from complex biological media and separating them into size-based subpopulations within 1 hour, achieving more efficiency and purity than ultracentrifugation. Furthermore, this method's cost-effectiveness and rapid enrichment of the vesicles align with demands for large-scale isolation and downstream analyses of nucleic acids and proteins. Our method opens new avenues in exploring, analyzing, and utilizing synthetic and extracellular vesicle subpopulations in various biomedical applications, including diagnostics, therapeutic delivery, and biomarker discovery.

2.
Small ; 18(51): e2205567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328714

RESUMO

Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas , Proteínas de Membrana/metabolismo , Dispositivos Lab-On-A-Chip
3.
Front Neurosci ; 18: 1426700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966760

RESUMO

Molecular biomarkers require the reproducible capture of disease-associated changes and are ideally sensitive, specific and accessible with minimal invasiveness to patients. Exosomes are a subtype of extracellular vesicles that have gained attention as potential biomarkers. They are released by all cell types and carry molecular cargo that reflects the functional state of the cells of origin. These characteristics make them an attractive means of measuring disease-related processes within the central nervous system (CNS), as they cross the blood-brain barrier (BBB) and can be captured in peripheral blood. In this review, we discuss recent progress made toward identifying blood-based protein and RNA biomarkers of several neurodegenerative diseases from circulating, CNS cell-derived exosomes. Given the lack of standardized methodology for exosome isolation and characterization, we discuss the challenges of capturing and quantifying the molecular content of exosome populations from blood for translation to clinical use.

4.
Cell Calcium ; 113: 102766, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295201

RESUMO

High-throughput quantification of the first- and second-phase insulin secretion dynamics is intractable with current methods. The fact that independent secretion phases play distinct roles in metabolism necessitates partitioning them separately and performing high-throughput compound screening to target them individually. We developed an insulin-nanoluc luciferase reporter system to dissect the molecular and cellular pathways involved in the separate phases of insulin secretion. We validated this method through genetic studies, including knockdown and overexpression, as well as small-molecule screening and their effects on insulin secretion. Furthermore, we demonstrated that the results of this method are well correlated with those of single-vesicle exocytosis experiments conducted on live cells, providing a quantitative reference for the approach. Thus, we have developed a robust methodology for screening small molecules and cellular pathways that target specific phases of insulin secretion, resulting in a better understanding of insulin secretion, which in turn will result in a more effective insulin therapy through the stimulation of endogenous glucose-stimulated insulin secretion.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Insulina/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Exocitose/fisiologia , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo
5.
ACS Nano ; 16(3): 4444-4457, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35174710

RESUMO

An electronic nose (e-nose) utilizes a multisensor array, which relies on the vector contrast of combinatorial responses, to effectively discriminate between volatile organic compounds (VOCs). In recent years, hierarchical structures made of nonbiological materials have been used to achieve the required sensor diversity. With the advent of self-assembling peptides, the ability to tune nanostructuration, surprisingly, has not been exploited for sensor array diversification. In this work, a designer surfactant-like peptide sequence, CG7-NH2, is used to fabricate morphologically and physicochemically heterogeneous "biohybrid" surfaces on Au-covered chips. These multistructural sensing surfaces, containing immobilized hierarchical nanostructures surrounded by self-assembled monolayers, are used for the detection and discrimination of VOCs. Through a simple and judicious design process, involving changes in pH and water content of peptide solutions, a five-element biohybrid sensor array coupled with a gas-phase surface plasmon resonance imaging system is shown to achieve sufficient discriminatory capabilities for four VOCs. Moreover, the limit of detection of the multiarray system is bench-marked at <1 and 6 ppbv for hexanoic acid and phenol (esophago-gastric biomarkers), respectively. Finally, the humidity effects are characterized, identifying the dissociation rate constant as a robust descriptor for classification, further exemplifying their efficacy as biomaterials in the field of artificial olfaction.


Assuntos
Nanoestruturas , Surfactantes Pulmonares , Compostos Orgânicos Voláteis , Nariz Eletrônico , Peptídeos , Tensoativos
6.
Biosensors (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436046

RESUMO

The last three decades have witnessed an increasing demand for novel analytical tools for the analysis of gases including odorants and volatile organic compounds (VOCs) in various domains. Traditional techniques such as gas chromatography coupled with mass spectrometry, although very efficient, present several drawbacks. Such a context has incited the research and industrial communities to work on the development of alternative technologies such as artificial olfaction systems, including gas sensors, olfactory biosensors and electronic noses (eNs). A wide variety of these systems have been designed using chemiresistive, electrochemical, acoustic or optical transducers. Among optical transduction systems, surface plasmon resonance (SPR) has been extensively studied thanks to its attractive features (high sensitivity, label free, real-time measurements). In this paper, we present an overview of the advances in the development of artificial olfaction systems with a focus on their development based on propagating SPR with different coupling configurations, including prism coupler, wave guide, and grating.


Assuntos
Ressonância de Plasmônio de Superfície , Compostos Orgânicos Voláteis , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Gases , Olfato , Compostos Orgânicos Voláteis/análise
7.
Talanta ; 212: 120777, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113542

RESUMO

The analysis of volatile organic compounds (VOCs) is an important issue in various domains. For this, electronic noses (eN) are very promising as novel analytical tools that are portable, inexpensive, and efficient for reliable and rapid analyses. Recently, we have demonstrated that surface plasmon resonance imaging (SPRI) is especially interesting for the development of eNs dedicated for gas-phase analysis of VOCs. To further improve the performance of the eN based on SPRI, in this study, we investigated the influence of the LED wavelength on the sensitivity of the system. For this, a complete theoretical study together with a related experimental investigation for the validation were carried out. We have shown that the wavelength of the light source has an impact on the surface sensitivity of SPRI for the detection of VOCs. Indeed, in the studied wavelength range from 530 nm to 740 nm, both bulk sensitivity and surface sensitivity increase as the wavelength increases with good coherence between theoretical and experimental results. With the optimal LED wavelength, the detection limits of our eN reach low ppb range for VOC such as 1-butanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA