Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33941644

RESUMO

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest to know whether the midlatitude region has been an evolutionary cradle or museum for conifers and how evolutionary and ecological factors have driven their spatiotemporal evolution. Here, we investigated the macroevolution of Pinus, the largest conifer genus and characteristic of northern temperate coniferous forests, based on nearly complete species sampling. Using 1,662 genes from transcriptome sequences, we reconstructed a robust species phylogeny and reestimated divergence times of global pines. We found that ∼90% of extant pine species originated in the Miocene in sharp contrast to the ancient origin of Pinus, indicating a Neogene rediversification. Surprisingly, species at middle latitudes are much older than those at other latitudes. This finding, coupled with net diversification rate analysis, indicates that the midlatitude region has provided an evolutionary museum for global pines. Analyses of 31 environmental variables, together with a comparison of evolutionary rates of niche and phenotypic traits with a net diversification rate, found that topography played a primary role in pine diversification, and the aridity index was decisive for the niche rate shift. Moreover, fire has forced diversification and adaptive evolution of Pinus Our study highlights the importance of integrating phylogenomic and ecological approaches to address evolution of biological groups at the global scale.


Assuntos
Ecologia/métodos , Ecossistema , Evolução Molecular , Filogenia , Pinus/genética , Análise Espaço-Temporal , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Especiação Genética , Variação Genética , Geografia , Fenótipo , Pinus/anatomia & histologia , Pinus/classificação , Especificidade da Espécie , Fatores de Tempo
2.
Mol Ecol ; 27(5): 1245-1260, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411444

RESUMO

Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries between Pinus strobiformis and Pinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate-associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build-up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.


Assuntos
Hibridização Genética , Pinus/genética , Fluxo Gênico , Frequência do Gene , Modelos Teóricos , Pinus/fisiologia , Isolamento Reprodutivo , Especificidade da Espécie
3.
PeerJ ; 10: e13812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942126

RESUMO

Background: In the projected climate change scenarios, assisted migration might play an important role in the ex situ conservation of the threatened plant species, by translocate them to similar suitable habitats outside their native distributions. However, it is unclear if such habitats will be available for the Rare Endemic Plant Species (REPS), because of their very restricted habitats. The aims of this study were to perform a population size assessment for the REPS Picea martinezii Patterson and Picea mexicana Martínez, and to evaluate the potential species distributions and their possibilities for assisted migration inside México and worldwide. Methods: We performed demographic censuses, field surveys in search for new stands, and developed distribution models for Last Glacial Maximum (22,000 years ago), Middle Holocene (6,000 years ago), current (1961-1990) and future (2050 and 2070) periods, for the whole Mexican territory (considering climatic, soil, geologic and topographic variables) and for all global land areas (based only on climate). Results: Our censuses showed populations of 89,266 and 39,059 individuals for P. martinezii and P. mexicana, respectively, including known populations and new stands. Projections for México indicated somewhat larger suitable areas in the past, now restricted to the known populations and new stands, where they will disappear by 2050 in a pessimistic climatic scenario, and scarce marginal areas (p = 0.5-0.79) remaining only for P. martinezii by 2070. Worldwide projections (based only on climate variables) revealed few marginal areas in 2050 only in México for P. martinezii, and several large areas (p ≥ 0.5) for P. mexicana around the world (all outside México), especially on the Himalayas in India and the Chungyang mountains in Taiwan with highly suitable (p ≥ 0.8) climate habitats in current and future (2050) conditions. However, those suitable areas are currently inhabited by other endemic spruces: Picea smithiana (Wall.) Boiss and Picea morrisonicola Hayata, respectively. Conclusions: Assisted migration would only be an option for P. martinezii on scarce marginal sites in México, and the possibilities for P. mexicana would be continental and transcontinental translocations. This rises two possible issues for future ex situ conservation programs: the first is related to whether or not consider assisted migration to marginal sites which do not cover the main habitat requirements for the species; the second is related to which species (the local or the foreign) should be prioritized for conservation when suitable habitat is found elsewhere but is inhabited by other endemic species. This highlights the necessity to discuss new policies, guidelines and mechanisms of international cooperation to deal with the expected high species extinction rates, linked to projected climate change.


Assuntos
Picea , Mudança Climática , Ecossistema , Espécies em Perigo de Extinção , México , Plantas
4.
PeerJ ; 9: e12182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616627

RESUMO

Developing methods for successfully grafting forest species will be helpful for establishing asexual seed orchards and increasing the success of forest genetic improvement programs in Mexico. In this study we investigated the effects of two grafting techniques (side veneer and top cleft) and two phenological stages of the scion buds (end of latency and beginning of sprouting), in combination with other seven grafting variables, on the sprouting and survival of 120 intraspecific grafts of Pinus engelmannii Carr. The scions used for grafting were taken from a 5.5-year-old commercial forest plantation. The first grafting was performed on January 18 (buds at the end of dormancy) and the second on February 21 (buds at the beginning of sprouting). The data were examined by analysis of variance and a test of means and were fitted to two survival models (the Weibull's accelerated failure time and the Cox's proportional hazards model) and the respective hazard ratios were calculated. Survival was higher in the top cleft grafts made with buds at the end of latency, with 80% sprouting and an estimated average survival time of between 164 and 457 days after the end of the 6-month evaluation period. Four variables (grafting technique, phenological stage of the scion buds, scion diameter and rootstock height) significantly affected the risk of graft death in both survival models. Use of top cleft grafts with buds at the end of the latency stage, combined with scion diameters smaller than 11.4 mm and rootstock heights greater than 58.5 cm, was associated with a lower risk of death.

5.
PeerJ ; 9: e10626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552718

RESUMO

The particleboard industry faces problems of wood shortage, which has led to the use of non-wood lignocellulosic materials. Furthermore, there is also interest in looking for materials that improve their physical and mechanical properties. The species Luffa aegyptiaca Mill. (fruit), Agave durangensis Gentry (bagasse) and Pennisetum sp. (plant, leaves and stem) could be used in the elaboration of wood-based particleboards. The aim of this study is to determine the feasibility of using these materials to produce particleboards in accordance with their chemical composition. Five materials were studied, A. durangensis (bagasse), L. aegyptiaca (fruit) and Pennisetum sp. (whole plant, leaves and stem). Extractives, holocellulose, Runkel lignin and ash content was determined. The pH of the fibers was also measured and a microanalysis of the ash was performed. ANOVA and Kruskal-Wallis tests were carried out, in addition Tukey and Dunn tests for group comparison were performed. Pennisetum sp. leaves presented the highest total extractives and ash content, while L. aegyptiaca fruit and A. durangensis bagasse had the highest both content of holocellulose and Runkel lignin respectively. The lowest pH was presented by the L. aegyptiaca fruit, while the highest was from the Pennisetum sp. stem. The element with the greatest presence in the five materials was potassium, except in A. durangensis bagasse showing calcium. L. aegyptiaca fruit has better characteristics to be used in particleboards with greater mechanical resistance because of its higher holocellulose content. However, Pennisetum sp. (plant, leaves and stem) could be used to make particleboards with high resistance to water absorption.

6.
Commun Biol ; 4(1): 160, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547394

RESUMO

Extant conifer species may be susceptible to rapid environmental change owing to their long generation times, but could also be resilient due to high levels of standing genetic diversity. Hybridisation between closely related species can increase genetic diversity and generate novel allelic combinations capable of fuelling adaptive evolution. Our study unravelled the genetic architecture of adaptive evolution in a conifer hybrid zone formed between Pinus strobiformis and P. flexilis. Using a multifaceted approach emphasising the spatial and environmental patterns of linkage disequilibrium and ancestry enrichment, we identified recently introgressed and background genetic variants to be driving adaptive evolution along different environmental gradients. Specifically, recently introgressed variants from P. flexilis were favoured along freeze-related environmental gradients, while background variants were favoured along water availability-related gradients. We posit that such mosaics of allelic variants within conifer hybrid zones will confer upon them greater resilience to ongoing and future environmental change and can be a key resource for conservation efforts.


Assuntos
Adaptação Biológica/genética , Introgressão Genética/fisiologia , Especiação Genética , Traqueófitas/genética , Alelos , Arizona , Evolução Biológica , Variação Genética/fisiologia , Geografia , Hibridização Genética/fisiologia , México , Mosaicismo , Pinus/genética , Polimorfismo de Nucleotídeo Único , Traqueófitas/classificação
7.
Front Plant Sci ; 12: 628795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995433

RESUMO

Insect damage to cones and seeds has a strong impact on the regeneration of conifer forest ecosystems, with broader implications for ecological and economic services. Lack of control of insect populations can lead to important economic and environmental losses. Pinus strobiformis is the most widespread of the white pines in Mexico and is widely distributed throughout the mountains of northern Mexico. Relatively few studies have examined insect damage to the cones and seeds of these pines, especially in Mexico. In this study, we therefore analyzed insect damage to cones and seeds of P. strobiformis in Mexico by using X-ray and stereomicroscopic analysis. The specific objectives of the study were (a) to characterize insect damage by measuring external and internal cone traits, (b) to assess the health of seeds and cones of P. strobiformis in the Sierra Madre Occidental, Mexico, and (c) to estimate the relative importance of the effects of different environmental variables on cone and seed damage caused by insects. We found that 80% of P. strobiformis seeds and 100% of the tree populations studied had damage caused by insects. Most seeds were affected by Leptoglossus occidentalis, Tetyra bipunctata, Megastigmus albifrons, and the Lepidoptera complex (which includes Apolychrosis synchysis, Cydia latisigna, Eucosma bobana, and Dioryctria abietivorella). The cones of all tree populations were affected by some type of insect damage, with Lepidoptera causing most of the damage (72%), followed by Conophthorus ponderosae (15%), the hemipteran L. occidentalis (7%), and the wasp M. albifrons (6%). The proportion of incomplete seeds in P. strobiformis at the tree level, cone damage by M. albifrons and seed damage in L. occidentalis were associated with various climate and soil variables and with crown dieback. Thus, cone and seed insect damage can be severe and potentially impact seed production in P. strobiformis and the reforestation potential of the species. The study findings will enable managers to better identify insects that cause damage to cone and seeds. In addition, identification of factors associated with damage may be useful for predicting the levels of insect predation on seeds and cones.

8.
PLoS One ; 15(6): e0235320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589650

RESUMO

The flow of water in temperate forests depends on the amount of precipitation, type of soil, topographic features, and forest cover, among other factors. Unlike the first three, forest cover can be modified by silvicultural treatments, the effects of which manifest in the quality and quantity of water, as well as in the transport of sediments and soil nutrients. The objective of this study was to analyze the effect of some stand variables on surface runoff and stemflow in pine-oak forests of northern Mexico. The stand variables included tree diameter at breast height, basal area, canopy cover, and volume. They were collected in eight 0.1-ha circular plots, measured in 2016 and re-measured in 2018. Nonlinear quantile regression was used to determine the best-fit relationships between the variables. Results indicated that surface runoff was most closely and inversely related to basal area. Stemflow was related to diameter at breast height, while showing no statistical significance. A stemflow funneling ratio did show an inverse, statistically-significant relationship with diameter at breast height. These results can help determine best forest management regimes compatible with the quantity and quality of water fluxes in this type of ecosystem.


Assuntos
Fenômenos Ecológicos e Ambientais , Florestas , Pinus , Quercus , México , Estações do Ano
9.
PeerJ ; 8: e8468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071810

RESUMO

Grafting is one of the most widely used methods for vegetative propagation, particularly for multiplying trees considered important, but there has been little research done on the effect of hybridization on grafts from the genus Pinus. Sometimes hybrids show the ability to reproduce and adapt efficiently to the environment. However, they reduce the genetic gain of seed orchards. The objective in this research was to evaluate the effect of scion grafts from pure species donor Pinus engelmannii Carr. and from putative hybrid trees P. engelmannii × P. arizonica Engelm., grafted on rootstocks of pure species P. engelmannii, along with the effect of the position of the scion in the donor tree crown (upper third and middle third). The scions were collected from three trees of the pure species and three hybrids. In each tree, 20 scions were collected from each third of the crown evaluated. 120 side-veneer grafts were made at the beginning of spring (March) 2018. Variance analyses were performed to evaluate the treatments and adjustments of the Logit and Weibull models to obtain the probability of graft survival. Significant differences were found between the origins of scions (p < 0.0083, after Bonferroni correction), showing grafts with hybrid tree scions taking hold better. In addition, the probability of survival at 5 months after grafting with hybrid tree scions was greater (p < 0.0001) than in grafts with scions from trees of the pure species (Logit model), which coincides with the results of the Weibull model, which indicated that the probability of graft death with pure species donor tree scions is greater than for grafts with hybrid scions. There were no significant differences regarding the position of the scion in the donor tree crown.

10.
PeerJ ; 8: e9766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879806

RESUMO

BACKGROUND: Biomass usage for energy purposes has emerged in response to global energy demands and environmental problems. The large amounts of by-products generated during logging are rarely utilized. In addition, some species (e.g., Quercus spp.) are considered less valuable and are left in the cutting areas. Production of pellets from this alternative source of biomass may be possible for power generation. Although the pellets may be of lower quality than other types of wood pellets, because of their physical and technological properties, the addition of different raw materials may improve the characteristics of the oak pellets. METHODS: Sawdust from the oak species Quercus sideroxyla, Q. rugosa, Q. laeta and Q. conzattii was mixed with sawdust from the pine Pinus durangensis in different ratios of oak to pine (100:0, 80:20, 60:40, 40:60 and 20:80). Physical and mechanical properties of the pellets were determined, and calorific value tests were carried out. For each variable, Kolmogorov-Smirnov normality and Kruskal-Wallis tests were performed and Pearson's correlation coefficients were determined (considering a significance level of p < 0.05). RESULTS: The moisture content and fixed carbon content differed significantly (p < 0.05) between the groups of pellets (i.e., pellets made with different sawdust mixtures). The moisture content of all pellets was less than 10%. However, volatile matter and ash content did not differ significantly between groups (p ≥ 0.05). The ash content was less than 0.7% in all mixtures. The addition of P. durangensis sawdust to the mixtures improved the bulk density of the pellets by 18%. Significant differences (p < 0.05) in particle density were observed between species, mixtures and for the species × mixture interaction. The particle density was highest in the 80:20 and 60:40 mixtures, with values ranging from 1,245 to 1,349 kg m-3. Bulk density and particle density of the pellets were positively correlated with the amount of P. durangensis sawdust included. The mechanical hardness and impact resistance index (IRI) differed significantly (p < 0.05) between groups. The addition of pine sawdust decreased the mechanical hardness of the pellets, up to 24%. The IRI was highest (138) in the Q. sideroxyla pellets (100:0). The mechanical hardness and IRI of the pellets were negatively correlated with the amount of P. durangensis sawdust added. The bulk density of the pellets was negatively correlated with mechanical hardness and IRI. The calorific value of mixtures and the species × mixture interaction differed significantly between groups. Finally, the mean calorific value was highest (19.8 MJ kg-1) in the 20:80 mixture. The calorific value was positively related to the addition of P. durangensis sawdust.

11.
PeerJ ; 8: e8648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149029

RESUMO

CONTEXT: Pinus herrerae and P. luzmariae are endemic to western Mexico, where they cover an area of more than 1 million hectares. Pinus herrerae is also cultivated in field trials in South Africa and South America, because of its considerable economic importance as a source of timber and resin. Seed quality, afforestation success and desirable traits may all be influenced by the presence of hybrid trees in seed stands. AIMS: We aimed to determine the degree of hybridization between P. herrerae and P. luzmariae in seed stands of each species located in the Sierra Madre Occidental, Durango, Mexico. METHODS: AFLP molecular markers from samples of 171 trees across five populations were analyzed with STRUCTURE and NewHybrids software to determine the degree of introgressive hybridization. The accuracy of STRUCTURE and NewHybrids in detecting hybrids was quantified using the software Hybridlab 1.0. Morphological analysis of 131 samples from two populations of P. herrerae and two populations of P. luzmariae was also conducted by Random Forest classification. The data were compared by Principal Coordinate Analysis (PCoA) in GenAlex 6.501. RESULTS: Hybridization between Pinus herrerae and P. luzmariae was observed in all seed stands under study and resulted in enhancement of desirable silvicultural traits in the latter species. In P. luzmariae, only about 16% molecularly detected hybrids correspond to those identified on a morphological basis. However, the morphology of P. herrerae is not consistent with the molecularly identified hybrids from one population and is only consistent with 3.3 of those from the other population. CONCLUSIONS: This is the first report of hybrid vigour (heterosis) in Mexican pines. Information about hybridization and introgression is essential for developing effective future breeding programs, successful establishment of plantations and management of natural forest stands. Understanding how natural hybridization may influence the evolution and adaptation of pines to climate change is a cornerstone to sustainable forest management including adaptive silviculture.

12.
Front Plant Sci ; 11: 559697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193485

RESUMO

The phenotype of trees is determined by the relationships and interactions among genetic and environmental influences. Understanding the patterns and processes that are responsible for phenotypic variation is facilitated by studying the relationships between phenotype and the environment among many individuals across broad ecological and climatic gradients. We used Pinus strobiformis, which has a wide latitudinal distribution, as a model species to: (a) estimate the relative importance of different environmental factors in predicting these morphological traits and (b) characterize the spatial patterns of standing phenotypic variation of cone and seed traits across the species' range. A large portion of the total variation in morphological characteristics was explained by ecological, climatic and geographical variables (54.7% collectively). The three climate, vegetation and geographical variable groups, each had similar total ability to explain morphological variation (43.4%, 43.8%, 51.5%, respectively), while the topographical variable group had somewhat lower total explanatory power (36.9%). The largest component of explained variance (33.6%) was the four-way interaction of all variable sets, suggesting that there is strong covariation in environmental, climate and geographical variables in their relationship to morphological traits of southwest white pine across its range. The regression results showed that populations in more humid and warmer climates expressed greater cone length and seed size. This may in part facilitate populations of P. strobiformis in warmer and wetter portions of its range growing in dense, shady forest stands, because larger seeds provide greater resources to germinants at the time of germination. Our models provide accurate predictions of morphological traits and important insights regarding the factors that contribute to their expression. Our results indicate that managers should be conservative during reforestation efforts to ensure match between ecotypic variation in seed source populations. However, we also note that given projected large range shift due to climate change, managers will have to balance the match between current ecotypic variation and expected range shift and changes in local adaptive optima under future climate conditions.

13.
Evol Appl ; 13(1): 195-209, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892952

RESUMO

A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well-developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization-mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio-temporal changes in the central location of a hybrid zone between two recently diverged species of pines: Pinus strobiformis and P. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual-based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.

14.
PeerJ ; 7: e8002, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31844562

RESUMO

BACKGROUND: Spatial genetic structure (SGS) analysis is a powerful approach to quantifying gene flow between trees, thus clarifying the functional connectivity of trees at population and landscape scales. The findings of SGS analysis may be useful for conservation and management of natural populations and plantations. Pinus cembroides is a widely distributed tree species, covering an area of about 2.5 million hectares in Mexico. The aim of this study was to examine five natural seed stands of P. cembroides in the Sierra Madre Occidental to determine the SGS at population (within the seed stand) and landscape (among seed stands) levels in order to establish guidelines for the conservation and management of the species. We hypothesized that P. cembroides, in which the seeds are dispersed by birds and mammals, creates weaker SGS than species with wind-dispersed seeds. METHODS: DNA fingerprinting was performed using the amplified fragment length polymorphism (AFLP) technique. In order to estimate the SGS at population and landscape levels, we measured the geographical (spatial) distance as the Euclidean distance. We also estimated the genetic distances between individuals using the pairwise kinship coefficient. RESULTS: The results showed non-significant autocorrelation in four out of five seed stands studied (i.e., a mainly random distribution in the space of the genetic variants of P. cembroides at population level). DISCUSSION: SGS was detected at the landscape scale, supporting the theory of isolation by distance as a consequence of restricted pollen and seed dispersal. However, the SGS may also have been generated by our sampling strategy. We recommended establishing a close network of seed stands of P. cembroides to prevent greater loss of local genetic variants and alteration of SGS. We recommend seed stands of P. cembroides of a minimum width of 225 m.

15.
PeerJ ; 6: e4603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29637026

RESUMO

The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the single-leaf pinyon (the world's only one-needled pine), inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US) and also of northern Baja California (Mexico). This tree is distributed as a relict subspecies, at elevations of between 1,010 and 1,631 m in the geographically isolated arid Sierra La Asamblea, an area characterized by mean annual precipitation levels of between 184 and 288 mm. The aim of this research was (i) to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea by using Sentinel-2 images, and (ii) to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that (i) Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to the finer resolution (×3) and greater number of bands (×2) relative to Landsat-8 data, which is publically available free of charge and has been demonstrated to be useful for estimating forest cover, and (ii) the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine the sites where conifers can become established and persist. An atmospherically corrected a 12-bit Sentinel-2A MSI image with 10 spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index (NDVI). Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multiple linear binominal logistical regression and Random Forest classification including cross validation were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Using supervised classification of Sentinel-2 satellite images, we estimated that P. monophylla covers 6,653 ± 319 ha in the isolated Sierra La Asamblea. The NDVI was one of the variables that contributed most to the prediction and clearly separated the forest cover (NDVI > 0.35) from the other vegetation cover (NDVI < 0.20). Ruggedness was the most influential environmental predictor variable, indicating that the probability of occurrence of P. monophylla was greater than 50% when the degree of ruggedness terrain ruggedness index was greater than 17.5 m. The probability of occurrence of the species decreased when the mean temperature in the warmest month increased from 23.5 to 25.2 °C. Ruggedness is known to create microclimates and provides shade that minimizes evapotranspiration from pines in desert environments. Identification of the P. monophylla stands in Sierra La Asamblea as the most southern populations represents an opportunity for research on climatic tolerance and community responses to climate variability and change.

16.
PeerJ ; 5: e3452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626616

RESUMO

BACKGROUND: Picea chihuahuana, which is endemic to Mexico, is currently listed as "Endangered" on the Red List. Chihuahua spruce is only found in the Sierra Madre Occidental (SMO), Mexico. About 42,600 individuals are distributed in forty populations. These populations are fragmented and can be classified into three geographically distinct clusters in the SMO. The total area covered by P. chihuahuana populations is less than 300 ha. A recent study suggested assisted migration as an alternative to the ex situ conservation of P. chihuahuana, taking into consideration the genetic structure and diversity of the populations and the predictions regarding the future climate of the habitat. However, detailed background information is required to enable development of plans for protecting and conserving species and for successful assisted migration. Thus, it is important to identify differences between populations in relation to environmental conditions. The genetic diversity of populations, which affect vigor, evolution and adaptability of the species, must also be considered. In this study, we examined 14 populations of P. chihuahuana, with the overall aim of discriminating the populations and form clusters of this species. METHODS: Each population was represented by one 50 × 50 m plot established in the center of its respective location. Climate, soil, dasometric, density variables and genetic and species diversities were assessed in these plots for further analyses. The putatively neutral and adaptive AFLP markers were used to calculate genetic diversity. Affinity Propagation (AP) clustering technique and k-means clustering algorithm were used to classify the populations in the optimal number of clusters. Later stepwise binomial logistic regression was applied to test for significant differences in variables of the southern and northern P. chihuahuana populations. Spearman's correlation test was used to analyze the relationships among all variables studied. RESULTS: The binomial logistic regression analysis revealed that seven climate variables, the geographical longitude and sand proportion in the soil separated the southern from northern populations. The northern populations grow in more arid and continental conditions and on soils with lower sand proportion. The mean genetic diversity using all AFLP studied of P. chihuahuana was significantly correlated with the mean temperature in the warmest month, where warmer temperatures are associated to larger genetic diversity. Genetic diversity of P. chihuahuana calculated with putatively adaptive AFLP was not statistically significantly correlated with any environmental factor. DISCUSSION: Future reforestation programs should take into account that at least two different groups (the northern and southern cluster) of P. chihuahuana exist, as local adaptation takes place because of different environmental conditions.

17.
PLoS One ; 11(4): e0152651, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064490

RESUMO

Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP) markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i) more heterogeneous genetic material, ii) higher genetic variation and therefore iii) the higher evolutionary potential of these stands, and iv) that the morphological differentiation (hybrid/not hybrid) is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material.


Assuntos
Hibridização Genética , Pinus/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , México , Sementes/genética , Árvores
19.
PLoS One ; 10(10): e0140442, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496189

RESUMO

The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.


Assuntos
Fenômenos Ecológicos e Ambientais , Ecossistema , Picea/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Algoritmos , Conservação dos Recursos Naturais/métodos , Geografia , México , Densidade Demográfica , Dinâmica Populacional , Árvores/classificação
20.
PLoS One ; 9(8): e105034, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127455

RESUMO

Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9-14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold, humid temperate climates than in dry, hot climates.


Assuntos
Biodiversidade , Clima , Árvores/fisiologia , Simulação por Computador , Geografia , México , Modelos Biológicos , Análise Multivariada , Pinus/fisiologia , Quercus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA