Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401308, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773889

RESUMO

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(1): 24-8, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25993813

RESUMO

Tantalum tungsten bronze(TaxWO3)nanowires were successfully synthesized via hydrothermal method using TaCl5 and Na2WO4 . 2H20 as raw materials. The morphology, crystal structure and optical properties of synthesized products were characterized by means of XRD, TEM, SEM, UV-Vis and Raman technologies. The XRD results showed that TaxWO3 nanowire exhibited hexagonal structure. By increasing the doping content, the cell parameter was kept increasing gradually till Ta/W= 0. 04, then it remained almost constant. The UV-Vis diffraction spectrum analysis showed that the absorption peaks redshifted, the band gap energy decreased with increasing the doping content. The Raman peaks moved with a downshift, and the peak gradually became broader, which further proved the influence of the tantalum doping for tungsten oxide. The reactions of decomposing liquid rhodamine B solution showed that the nanosized TaxWO3 had a high photo-catalytic activity.

3.
Ecol Evol ; 12(4): e8815, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475184

RESUMO

The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free-living aphids. Here, we generated a high-quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine-seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single-copy orthologous genes. A total of 14,089 protein-coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high-quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.

4.
Nanoscale Res Lett ; 9(1): 470, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258600

RESUMO

The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA