Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 154(11): 114707, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752369

RESUMO

Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1-6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13-ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13-ySny.

2.
Inorg Chem ; 59(4): 2484-2494, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32011121

RESUMO

Reactions of boron, tellurium, and either iron or manganese in a praseodymium-nickel flux led to the production of Pr21M16Te6B30 (M = Fe or Mn) with a novel structure type that features M16B30 clusters surrounded by a Pr/Te framework. Due to disorder in the orientation of the transition metal boride clusters, these phases initially appear to form in the cubic space group Pm3̅m. However, analysis of site occupancy, bond lengths, and local structure in the M16B30 sublattice indicates the local symmetry is P4̅3m. This space group symmetry is supported by transmission electron microscopy studies including selected area electron diffraction (SAED) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), which indicate ordered regions. The M16B30 cluster twinning domain that could be as small as nanometer size inside a single crystal results in the misleading Pm3̅m symmetry. Electronic structure calculations indicate the Pr21M16Te6B30 phases are metals. Magnetic susceptibility measurements show that both the praseodymium and the transition metal have magnetic moments in these compounds. Pr21Mn16Te6B30 exhibits antiferromagnetic ordering at TN = 15 K, and Pr21Fe16Te6B30 undergoes a likely ferrimagnetic transition at TC = 23 K.

3.
Inorg Chem ; 59(5): 3079-3084, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049498

RESUMO

Structural, electrical, and thermal properties of CdSnAs2, with analyses from temperature-dependent transport properties over a large temperature range, are reported. Phase-pure microcrystalline powders were synthesized that were subsequently densified to a high-density homogeneous polycrystalline specimen for this study. Temperature-dependent transport indicates n-type semiconducting behavior with a very high and nearly temperature independent mobility over the entire measured temperature range, attributed to the very small electron effective mass of this material. The Debye model was successfully applied to model the thermal conductivity and specific heat. This work contributes to the fundamental understanding of this material, providing further insight and allowing for investigations into altering this and related physical properties of these materials for technological applications.

4.
Chemphyschem ; 19(20): 2635-2644, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30059598

RESUMO

Bornite materials are naturally occurring systems composed of earth-abundant constituents. Bournonite, a representative of this class of materials, is of interest for thermoelectric applications due to its inherently low thermal conductivity, which has been attributed to the lattice distortions due to stereochemically active electron lone pair distributions. In this computational and experimental study, we present analyses of the lattice structure, electron and phonon dynamics, and charge localization and transfer properties for undoped and Ni and Zn doped bournonites. The results from our simulations reveal complex relations between bond length and bond angle characteristics, chemical bonding, and charge transfer upon doping. Analysis of the experimental results indicate that a microscopic description for bournonite and its doped compositions is necessary for a complete understanding of these materials, as well as for effective control of the transport properties for targeted applications.

5.
Inorg Chem ; 57(15): 9327-9334, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29995394

RESUMO

Single crystals of clathrate-I Ba8Cu16As30 have been synthesized and their structure and electronic properties determined using synchrotron-based X-ray diffraction and first-principles calculations. The structure is confirmed to be Pm3̅ n (No. 223), with lattice parameter a = 10.4563(3) Å, and defined by a tetrahedrally bonded network of As and Cu that forms two distinct coordination polyhedra, with Ba residing inside these polyhedra. All crystallographic positions are fully occupied with no vacancies or superstructure with the Cu atoms, while occupying all framework sites in the network, exhibiting a preference for the 6c site. Agreement between the experimental and theoretically predicted structures was achieved after accounting for spin-orbit coupling. Our calculated Fermi surface, electron localization, and charge transfer, as well as a comparison with the results for elemental As46, provide insight into the fundamental properties of this clathrate-I material.

6.
Inorg Chem ; 57(4): 2002-2012, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400457

RESUMO

Single crystals of a complex Zintl compound with the composition Na4Ge13 were synthesized for the first time using a high-pressure/high-temperature approach. Single-crystal diffraction of synchrotron radiation revealed a hexagonal crystal structure with P6/m space group symmetry that is composed of a three-dimensional sp3 Ge framework punctuated by small and large channels along the crystallographic c axis. Na atoms are inside hexagonal prism-based Ge cages along the small channels, while the larger channels are occupied by layers of disordered sixfold Na rings, which are in turn filled by disordered [Ge4]4- tetrahedra. This compound is the same as "Na1-xGe3+z" reported previously, but the availability of single crystals allowed for more complete structural determination with a formula unit best described as Na4Ge12(Ge4)0.25. The compound is the first known example of a guest-host structure where discrete Zintl polyanions are confined inside the channels of a three-dimensional covalent framework. These features give rise to temperature-dependent disorder, as confirmed by first-principles calculations and physical properties measurements. The availability of single-crystal specimens allowed for measurement of the intrinsic low-temperature transport properties of this material and revealed its semiconductor behavior, which was corroborated by theoretical calculations.

7.
Phys Rev Lett ; 118(14): 146601, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430499

RESUMO

Large-volume, phase-pure synthesis of BC8 silicon (Ia3[over ¯], cI16) has enabled bulk measurements of optical, electronic, and thermal properties. Unlike previous reports that conclude BC8-Si is semimetallic, we demonstrate that this phase is a direct band gap semiconductor with a very small energy gap and moderate carrier concentration and mobility at room temperature, based on far- and midinfrared optical spectroscopy, temperature-dependent electrical conductivity, Seebeck and heat capacity measurements. Samples exhibit a plasma wavelength near 11 µm, indicating potential for infrared plasmonic applications. Thermal conductivity is reduced by 1-2 orders of magnitude depending on temperature as compared with the diamond cubic (DC-Si) phase. The electronic structure and dielectric properties can be reproduced by first-principles calculations with hybrid functionals after adjusting the level of exact Hartree-Fock (HF) exchange mixing. These results clarify existing limited and controversial experimental data sets and ab initio calculations.

8.
Inorg Chem ; 56(22): 14040-14044, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29083890

RESUMO

Materials with very low thermal conductivities continue to be of interest for a variety of applications. We synthesized CuSbS2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. In addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS1.8Te0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that of CuSbS2, in addition to investigating the effect of Te alloying on these properties.

9.
Chemphyschem ; 16(15): 3264-70, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26330172

RESUMO

An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought.

10.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673262

RESUMO

Thermoelectric devices are both solid-state heat pumps and energy generators. Having a reversible process without moving parts is of high importance for applications in remote locations or under extreme conditions. Yet, most thermoelectric devices have a rather limited energy conversion efficiency due to the natural competition between high electrical conductivity and low thermal conductivity, both being essential conditions for achieving a high energy conversion efficiency. Heavy-fermion compounds YbT2Zn20 (T = Co, Rh, Ir) have been reported to be potential candidate materials for thermoelectric applications at low temperatures. Motivated by this result, we applied chemical substitution studies on the transition metal site in order to optimize the charge carrier concentration as well as promote more efficient phonon scatterings. Here, we present the latest investigation on the Ni-doped specimens YbCo2-xNixZn20, where enhanced thermoelectric figure of merit values have been obtained.

11.
Materials (Basel) ; 14(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578981

RESUMO

The precise engineering of thermoelectric materials using nanocrystals as their building blocks has proven to be an excellent strategy to increase energy conversion efficiency. Here we present a synthetic route to produce Sb-doped PbS colloidal nanoparticles. These nanoparticles are then consolidated into nanocrystalline PbS:Sb using spark plasma sintering. We demonstrate that the introduction of Sb significantly influences the size, geometry, crystal lattice and especially the carrier concentration of PbS. The increase of charge carrier concentration achieved with the introduction of Sb translates into an increase of the electrical and thermal conductivities and a decrease of the Seebeck coefficient. Overall, PbS:Sb nanomaterial were characterized by two-fold higher thermoelectric figures of merit than undoped PbS.

12.
Sci Adv ; 7(5)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33514554

RESUMO

Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic, and topological phenomena and applications. In bulk materials, SOC strength is a constant. Here, we demonstrate SOC and intrinsic spin splitting in atomically thin InSe, which can be modified over a broad range. From quantum oscillations, we establish that the SOC parameter α is thickness dependent; it can be continuously modulated by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Unexpectedly, α could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.

13.
ACS Cent Sci ; 6(11): 2023-2030, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274279

RESUMO

The localized f-electrons enrich the magnetic properties in rare-earth-based intermetallics. Among those, compounds with heavier 4d and 5d transition metals are even more fascinating because anomalous electronic properties may be induced by the hybridization of 4f and itinerant conduction electrons primarily from the d orbitals. Here, we describe the observation of trivalent Yb3+ with S = 1/2 at low temperatures in Yb x Pt5P, the first of a new family of materials. Yb x Pt5P (0.23 ≤ x ≤ 0.96) phases were synthesized and structurally characterized. They exhibit a large homogeneity width with the Yb ratio exclusively occupying the 1a site in the anti-CeCoIn5 structure. Moreover, a sudden resistivity drop could be found in Yb x Pt5P below ∼0.6 K, which requires further investigation. First-principles electronic structure calculations substantiate the antiferromagnetic ground state and indicate that two-dimensional nesting around the Fermi level may give rise to exotic physical properties, such as superconductivity. Yb x Pt5P appears to be a unique case among materials.

14.
Dalton Trans ; 49(7): 2273-2279, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32016192

RESUMO

The synthesis, electronic structure and temperature dependent transport properties of polycrystalline Cu1+xMn2-xInTe4 (x = 0, 0.2, 0.3) are reported for the first time. These quaternary chalcogenides were synthesized by direct reaction of the elements, followed by solid state annealing and hot press densification. The thermal conductivity is low for all specimens and intrinsic to the material system. Furthermore, the off-stoichiometry specimens illustrate the sensitivity of the transport properties to stoichiometry, with a greater than two-orders-of magnitude increase in carrier concentration with increased Cu content. First principles calculations of the electronic structure are also reported, and are in agreement with the experimental data. This fundamental investigation shows the potential towards further optimization of the electrical properties that, in addition to the intrinsically low thermal conductivity, provides a basis for further research into the viability of this material system for potential energy-related applications.

15.
Dalton Trans ; 48(16): 5327-5334, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30941388

RESUMO

We present the combined results of single crystal X-ray diffraction, physical properties characterization, and theoretical assessment of EuSnP under high pressure. Single crystals of EuSnP prepared using Sn self-flux crystallize in the tetragonal NbCrN-type crystal structure (S.G. P4/nmm) at ambient pressure. Previous studies have shown that for Eu ions, seven unpaired electrons impart a 2+ oxidation state. Assuming the oxidation states of Eu to be +2 and P to be -3, each Sn will donate one electron, with one p valence electron left for forming a weak Sn-Sn bond. According to the high-pressure single crystal X-ray diffraction measurements, no structural phase transition was observed up to ∼6.2 GPa. Temperature-dependent resistivity measurements up to 2.15 GPa on single crystals indicate that the phase-transition temperature occurring at the Néel temperature (TN) is significantly enhanced under high pressure. The robust crystallography and enhanced antiferromagnetic transition temperatures can be rationalized by the electronic structure calculations and chemical bonding analysis. The increasing Eu-P bonding interaction is consistent with the lattice parameter changing and enhanced TN. Moreover, the molecular orbital diagram shows that the weak Sn-Sn bond can be squeezed under pressure, acting as a compression buffer to stabilize the structure.

16.
Sci Adv ; 5(5): eaaw6183, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31172031

RESUMO

Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds YbTM 2Zn20 (TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor (PF = 74 µW/cm-K2; TM = Ir) and a high figure of merit (ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f-electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials.

17.
Dalton Trans ; 46(39): 13342-13344, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28920617

RESUMO

We report for the first time the investigation of thermal conductivity for a perovskite-type MOF crystal. In situ single crystal X-ray diffraction technology was employed to track the phase transition of a newly synthesized perovskite MOF. The perovskite MOF crystal exhibits a low thermal conductivity of 1.3 W (K m)-1 in comparison to most of the bulk crystal materials at room temperature.

18.
Materials (Basel) ; 9(9)2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28773853

RESUMO

Tin clathrate-II framework-substituted compositions are of current interest as potential thermoelectric materials for medium-temperature applications. A review of the literature reveals different compositions reported with varying physical properties, which depend strongly on the exact composition as well as the processing conditions. We therefore initiated an approach whereby single crystals of two different (K,Ba)16(Ga,Sn)136 compositions were first obtained, followed by grinding of the crystals into fine powder for low temperature spark plasma sintering consolidation into dense polycrystalline solids and subsequent high temperature transport measurements. Powder X-ray refinement results indicate that the hexakaidecahedra are empty, K and Ba occupying only the decahedra. Their electrical properties depend on composition and have very low thermal conductivities. The structural and transport properties of these materials are compared to that of other Sn clathrate-II compositions.

19.
ACS Appl Mater Interfaces ; 7(18): 9752-7, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25894101

RESUMO

Cu2ZnSnSe4 and Ag2ZnSnSe4 nanocrystals were synthesized by a colloidal synthesis route and subsequently densified to form dense polycrystalline bulk specimens with nanoscale grains employing spark plasma sintering (SPS). Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and electron diffraction spectroscopy (EDS) were used to characterize the nanocrystals. The optical bandgap, thermal stability, and low temperature transport properties of the nanostructured polycrystalline stannites Cu2ZnSnSe4 and Ag2ZnSnSe4 were investigated. The transport properties of Ag2ZnSnSe4 are reported here for the first time and indicate polaronic-type conduction. Cu2ZnSnSe4 is p-type while Ag2ZnSnSe4 is n-type. The thermal transport in these materials is also investigated, the thermal conductivity of nanostructured Cu2ZnSnSe4 being greatly reduced compared with that of the bulk. Our results are presented in light of the interest in these materials for thermoelectric applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA