Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0287544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410733

RESUMO

Due to the effects of noise disturbances and system resilience, the current methods for rolling bearing fault feature extraction and degradation trend estimation can hardly achieve more satisfactory results. To address the above issues, we propose a different method for fault feature extraction and degradation trend estimation. Firstly, we preset the Bayesian inference criterion to evaluate the complexity of the denoised vibration signal. When its complexity reaches a minimum, the noise disturbances are exactly removed. Secondly, we define the system resilience obtained by the Bayesian network as the intrinsic index of the system, which is used to correct the equipment degradation trend obtained by the multivariate status estimation technique. Finally, the effectiveness of the proposed method is verified by the completeness of the extracted fault features and the accuracy of the degradation trend estimation over the whole life cycle of the bearing degradation data.


Assuntos
Vibração , Teorema de Bayes
2.
Sci Rep ; 7(1): 16366, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180683

RESUMO

The soybean sprout is a nutritious and delicious vegetable that is rich in ascorbic acid (AsA). Hydrogen gas (H2) may have potential applications in the vegetable processing industry. To investigate whether H2 is involved in the regulation of soybean sprouts AsA biosynthesis under UV irradiation, we set 4 different treatments: white light(W), W+HRW, UV-A and UV-A+HRW. The results showed that H2 significantly blocked the UV-A-induced accumulation of ROS, decreased TBARS content and enhanced SOD and APX activity in soybean sprouts. We also observed that the UV-A induced accumulation of AsA was enhanced more intensely when co-treated with HRW. Molecular analyses showed that UV-A+HRW significantly up-regulated AsA biosynthesis and recycling genes compared to UV-A in soybean sprouts. These data demonstrate that the H2 positively regulates soybean sprouts AsA accumulation under UV-A and that this effect is mediated via the up-regulation of AsA biosynthesis and recycling genes.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Glycine max/fisiologia , Glycine max/efeitos da radiação , Hidrogênio/metabolismo , Raios Ultravioleta , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Nat Commun ; 8(1): 296, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831042

RESUMO

State-of-the-art compact antennas rely on electromagnetic wave resonance, which leads to antenna sizes that are comparable to the electromagnetic wavelength. As a result, antennas typically have a size greater than one-tenth of the wavelength, and further miniaturization of antennas has been an open challenge for decades. Here we report on acoustically actuated nanomechanical magnetoelectric (ME) antennas with a suspended ferromagnetic/piezoelectric thin-film heterostructure. These ME antennas receive and transmit electromagnetic waves through the ME effect at their acoustic resonance frequencies. The bulk acoustic waves in ME antennas stimulate magnetization oscillations of the ferromagnetic thin film, which results in the radiation of electromagnetic waves. Vice versa, these antennas sense the magnetic fields of electromagnetic waves, giving a piezoelectric voltage output. The ME antennas (with sizes as small as one-thousandth of a wavelength) demonstrates 1-2 orders of magnitude miniaturization over state-of-the-art compact antennas without performance degradation. These ME antennas have potential implications for portable wireless communication systems.The miniaturization of antennas beyond a wavelength is limited by designs which rely on electromagnetic resonances. Here, Nan et al. have developed acoustically actuated antennas that couple the acoustic resonance of the antenna with the electromagnetic wave, reducing the antenna footprint by up to 100.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA