Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163897

RESUMO

BACKGROUND: Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS: The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION: Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.


Assuntos
Cactaceae , Reguladores de Crescimento de Plantas , Transcriptoma , Cactaceae/genética , Interações Hospedeiro-Patógeno/genética , Resistência à Doença/genética , Redes e Vias Metabólicas , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
J. venom. anim. toxins incl. trop. dis ; 19: 9-9, maio 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-686619

RESUMO

Background: Previous works had shown that scorpion venom induced neurotransmitter elevation and an inflammatory response associated with various anatomo-pathological modifications. The most dangerous scorpions species in Algeria responsible for these effects are Androctonus australis hector (Aah) and Androctonus amoreuxi (Aam). Results: Comparison of the physiopathological effects induced by the two venoms showed differences in the kinetic of cytokine release and in lung injury. The lung edema was only observed in response to Aah venom and it was correlated with cell infiltration. In order to better understand the involved mechanism in inflammatory response, we used two antagonists, atropine (non-selective muscarinic antagonist) and propranolol (ß adrenergic antagonist), which lead to a decrease of cell infiltration but has no effect on edema forming. Conclusion: These results suggest another pathway in the development of lung injury following envenomation with Aam or Aah venom.(AU)


Assuntos
Animais , Masculino , Feminino , Pele/metabolismo , Bufo rana , Hemólise/fisiologia , Anfíbios/fisiologia , Ensaio de Atividade Hemolítica de Complemento , Técnica de Placa Hemolítica/métodos , Osmorregulação
3.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484526

RESUMO

The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+), or antioxidants (ascorbic acid, reduced glutathione, and cysteine). Results Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the hemolytic activity. Conclusions The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane.


Assuntos
Animais , Anfíbios/classificação , Oxidação Biológica , Secreções Corporais , Bufo rana , Hemólise/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA