Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 96(3): e29531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515377

RESUMO

The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Ubiquitina-Proteína Ligases , Humanos , Proliferação de Células , COVID-19/genética , COVID-19/virologia , Proteínas do Nucleocapsídeo/genética , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo
2.
J Med Virol ; 96(2): e29439, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38294104

RESUMO

Hepatitis B virus (HBV) infection is a serious global health problem. After the viruses infect the human body, the host can respond to the virus infection by coordinating various cellular responses, in which mitochondria play an important role. Evidence has shown that mitochondrial proteins are involved in host antiviral responses. In this study, we found that the overexpression of TIM22 and TIM29, the members of the inner membrane translocase TIM22 complex, significantly reduced the level of intracellular HBV DNA and RNA and secreted HBV surface antigens and E antigen. The effects of TIM22 and TIM29 on HBV replication and transcription is attributed to the reduction of core promoter activity mediated by the increased expression of SRSF1 which acts as a suppressor of HBV replication. This study provides new evidence for the critical role of mitochondria in the resistance of HBV infection and new targets for the development of treatment against HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Fatores de Processamento de Serina-Arginina , Humanos , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Fatores de Processamento de Serina-Arginina/metabolismo , Replicação Viral , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-30224531

RESUMO

The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/efeitos dos fármacos , Indóis/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/biossíntese , DNA Viral/genética , Genes Reporter , Células HEK293 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
4.
STAR Protoc ; 4(1): 102139, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861822

RESUMO

Biotin proximity labeling is a technique based on the TurboID enzyme that can be used to capture weak or dynamic interactions that had previously not been used to map proteins interacting with a specific DNA sequence. Here, we present a protocol for identifying specific DNA-sequence-binding proteins. We describe steps for biotin labeling of DNA-binding proteins, protein enrichment and sodium dodecyl sulfate polyacrylamide gel electrophoresis separation, and proteomic analysis. For complete details on the use and execution of this protocol, please refer to Wei et al. (2022).1.


Assuntos
Biotina , Proteínas de Ligação a DNA , Proteômica/métodos
5.
J Biotechnol ; 357: 100-107, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35963591

RESUMO

Caspases are a family of evolutionary conserved cysteine proteases that play key roles in programmed cell death and inflammation. Among the methods for the detection of caspase activity, biosensors based on luciferases have advantages in genetical encoding and convenience in assay. In this study, we constructed a new set of caspase biosensors based on NanoLuc luciferase. This kind of sensors, named NanoLock, work in dark-to-bright model, with the help of a NanoLuc quencher peptide (HiBiT-R/D) mutated from HiBiT. Optimized NanoLock responded to proteases with high signal to noise ratio (S/N), 1233-fold activation by tobacco etch virus protease in HEK293 cells and > 500-fold induction to caspase 3 in vitro. We constructed NanoLocks for the detection of caspase 1, 3, 6, 7, 8, 9, and 10, and assays in HEK293 cells demonstrated that these sensors performed better than commercial kits in the aspect of S/N and convenience. We further established a cell line stably expressing NanoLock-casp 6 and provided a proof-of-concept for the usage of this cell line in the high throughput screening of caspase 6 modulator.


Assuntos
Apoptose , Caspases , Caspase 3 , Caspases/genética , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo
6.
iScience ; 25(6): 104416, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35663023

RESUMO

The core promoter (CP) of hepatitis B virus (HBV) is critical for HBV replication by controlling the transcription of pregenomic RNA (pgRNA). Host factors regulating the activity of the CP can be identified by different methods. Biotin-based proximity labeling, a powerful method with the capability to capture weak or dynamic interactions, has not yet been used to map proteins interacting with the CP. Here, we established a strategy, based on the newly evolved promiscuous enzyme TurboID, for interrogating host factors regulating the activity of HBV CP. Using this strategy, we identified STAU1 as an important factor involved in the regulation of HBV CP. Mechanistically, STAU1 indirectly binds to CP mediated by TARDBP, and recruits the SAGA transcription coactivator complex to the CP to upregulate its activity. Moreover, STAU1 binds to HBx and enhances the level of HBx by stabilizing it in a ubiquitin-independent manner.

7.
J Virol Methods ; 255: 52-59, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29447911

RESUMO

Fusion core proteins of Hepatitis B virus can be used to study core protein functions or capsid trafficking. A problem in constructing fusion core proteins is functional impairment of the individual domains in these fusion proteins, might due to structural interference. We reported a method to construct fusion proteins of Hepatitis B virus core protein (HBc) in which the functions of fused domains were partially kept. This method follows two principles: (1) fuse heterogeneous proteins at the N terminus of HBc; (2) use long Glycine-serine linkers between the two domains. Using EGFP and RFP as examples, we showed that long flexible G4S linkers can effectively separate the two domains in function. Among these fusion proteins constructed, GFP-G4S186-HBc and RFP-G4S47-HBc showed the best efficiency in rescuing the replication of an HBV replicon deficient in the core protein expression, though both of the two fusion proteins failed to support the formation of the relaxed circular DNA. These fluorescent protein-tagged HBcs might help study related to HBc or capsids tracking in cells.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Nucleocapsídeo/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Linhagem Celular , Vírus da Hepatite B/genética , Humanos , Nucleocapsídeo/química , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA