Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4310, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383608

RESUMO

Addressing the challenge of efficiently solving multi-objective optimization problems (MOP) and attaining satisfactory optimal solutions has always posed a formidable task. In this paper, based on the chicken swarm optimization algorithm, proposes the non-dominated sorting chicken swarm optimization (NSCSO) algorithm. The proposed approach involves assigning ranks to individuals in the chicken swarm through fast non-dominance sorting and utilizing the crowding distance strategy to sort particles within the same rank. The MOP is tackled based on these two strategies, with the integration of an elite opposition-based learning strategy to facilitate the exploration of optimal solution directions by individual roosters. NSCSO and 6 other excellent algorithms were tested in 15 different benchmark functions for experiments. By comprehensive comparison of the test function results and Friedman test results, the results obtained by using the NSCSO algorithm to solve the MOP problem have better performance. Compares the NSCSO algorithm with other multi-objective optimization algorithms in six different engineering design problems. The results show that NSCSO not only performs well in multi-objective function tests, but also obtains realistic solutions in multi-objective engineering example problems.

2.
Biomimetics (Basel) ; 9(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275451

RESUMO

Clustering is an unsupervised learning method. Density Peak Clustering (DPC), a density-based algorithm, intuitively determines the number of clusters and identifies clusters of arbitrary shapes. However, it cannot function effectively without the correct parameter, referred to as the cutoff distance (dc). The traditional DPC algorithm exhibits noticeable shortcomings in the initial setting of dc when confronted with different datasets, necessitating manual readjustment. To solve this defect, we propose a new algorithm where we integrate DPC with the Black Widow Optimization Algorithm (BWOA), named Black Widow Density Peaks Clustering (BWDPC), to automatically optimize dc for maximizing accuracy, achieving automatic determination of dc. In the experiment, BWDPC is used to compare with three other algorithms on six synthetic data and six University of California Irvine (UCI) datasets. The results demonstrate that the proposed BWDPC algorithm more accurately identifies density peak points (cluster centers). Moreover, BWDPC achieves superior clustering results. Therefore, BWDPC represents an effective improvement over DPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA