Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967146

RESUMO

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Nitrogênio , Melhoramento Vegetal , Produtos Agrícolas/genética
2.
Lab Invest ; : 102107, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964504

RESUMO

DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers, however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sub-lines were established. Wound-healing and Transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (SCID mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 down-stream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sub-lines, OE cells presented weaker migration/invasion abilities, compared with controls, while in KD cells these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G-protein coupled receptor C5C (GPRC5C) was a key down-stream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion, and remarkably reversed the pro-invasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histological grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via down-regulation of GPRC5C.

3.
New Phytol ; 241(4): 1421-1434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174365

RESUMO

Receptor-like kinases (RLKs) are evolved for plant cell-cell communications. The typical RLK protein contains an extracellular and hypervariable N-terminus to perceive various signals, a transmembrane domain to anchor into plasma membrane, and a cytoplasmic, highly conserved kinase domain to phosphorylate target proteins. To date, RLKs have manifested their significance in a myriad of biological processes during plant reproductive growth, especially in male fertility. This review first summarizes a recent update on RLKs and their interacting protein partners controlling anther and pollen development, pollen release from dehisced anther, and pollen function during pollination and fertilization. Then, regulatory networks of RLK signaling pathways are proposed. In addition, we predict RLKs in maize and rice genome, obtain homologs of well-studied RLKs from phylogeny of three subfamilies and then analyze their expression patterns in developing anthers of maize and rice to excavate potential RLKs regulating male fertility in crops. Finally, current challenges and future prospects regarding RLKs are discussed. This review will contribute to a better understanding of plant male fertility control by RLKs, creating potential male sterile lines, and inspiring innovative crop breeding methods.


Assuntos
Melhoramento Vegetal , Plantas , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade
4.
Cell Commun Signal ; 22(1): 84, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291511

RESUMO

BACKGROUND: Alzheimer's disease (AD), affecting many elders worldwide, is characterized by A-beta and tau-related cognitive decline. Accumulating evidence suggests that brain iron accumulation is an important characteristic of AD. However, the function and mechanism of the iron-mediated gut-brain axis on AD is still unclear. METHODS: A Caenorhabditis elegans model with tau-overexpression and a high-Fe diet mouse model of cognitive impairment was used for probiotic function evaluation. With the use of qPCR, and immunoblotting, the probiotic regulated differential expression of AD markers and iron related transporting genes was determined. Colorimetric kits, IHC staining, and immunofluorescence have been performed to explore the probiotic mechanism on the development of gut-brain links and brain iron accumulation. RESULTS: In the present study, a high-Fe diet mouse model was used for evaluation in which cognitive impairment, higher A-beta, tau and phosphorylated (p)-tau expression, and dysfunctional phosphate distribution were observed. Considering the close crosstalk between intestine and brain, probiotics were then employed to delay the process of cognitive impairment in the HFe mouse model. Pediococcus acidilactici (PA), but not Bacillus subtilis (BN) administration in HFe-fed mice reduced brain iron accumulation, enhanced global alkaline phosphatase (AP) activity, accelerated dephosphorylation, lowered phosphate levels and increased brain urate production. In addition, because PA regulated cognitive behavior in HFe fed mice, we used the transgenic Caenorhabditis elegans with over-expressed human p-tau for model, and then PA fed worms became more active and longer lived than E.coli fed worms, as well as p-tau was down-regulated. These results suggest that brain iron accumulation influences AD risk proteins and various metabolites. Furthermore, PA was shown to reverse tau-induced pathogenesis via iron transporters and AP-urate interaction. CONCLUSIONS: PA administration studies demonstrate that PA is an important mediator of tau protein reduction, p-tau expression and neurodegenerative behavior both in Caenorhabditis elegans and iron-overload mice. Finally, our results provide candidates for AP modulation strategies as preventive tools for promoting brain health. Video Abstract.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Pediococcus acidilactici , Camundongos , Animais , Humanos , Idoso , Pediococcus acidilactici/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Úrico , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Ferro , Fosfatos
5.
Plant Biotechnol J ; 21(7): 1320-1342, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36435985

RESUMO

Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.


Assuntos
Nitrogênio , Reguladores de Crescimento de Plantas , Melhoramento Vegetal , Produtos Agrícolas , Biotecnologia
6.
Plant Biotechnol J ; 21(9): 1839-1859, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349934

RESUMO

Stalk rot caused by Fusarium verticillioides (Fv) is one of the most destructive diseases in maize production. The defence response of root system to Fv invasion is important for plant growth and development. Dissection of root cell type-specific response to Fv infection and its underlying transcription regulatory networks will aid in understanding the defence mechanism of maize roots to Fv invasion. Here, we reported the transcriptomes of 29 217 single cells derived from root tips of two maize inbred lines inoculated with Fv and mock condition, and identified seven major cell types with 21 transcriptionally distinct cell clusters. Through the weighted gene co-expression network analysis, we identified 12 Fv-responsive regulatory modules from 4049 differentially expressed genes (DEGs) that were activated or repressed by Fv infection in these seven cell types. Using a machining-learning approach, we constructed six cell type-specific immune regulatory networks by integrating Fv-induced DEGs from the cell type-specific transcriptomes, 16 known maize disease-resistant genes, five experimentally validated genes (ZmWOX5b, ZmPIN1a, ZmPAL6, ZmCCoAOMT2, and ZmCOMT), and 42 QTL or QTN predicted genes that are associated with Fv resistance. Taken together, this study provides not only a global view of maize cell fate determination during root development but also insights into the immune regulatory networks in major cell types of maize root tips at single-cell resolution, thus laying the foundation for dissecting molecular mechanisms underlying disease resistance in maize.


Assuntos
Fusarium , Zea mays , Resistência à Doença/genética , Perfilação da Expressão Gênica , Fusarium/fisiologia , Análise de Sequência de RNA
7.
BMC Cancer ; 23(1): 511, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277714

RESUMO

BACKGROUND: This study aimed to identify the biological functions, expression modes, and possible mechanisms underlying the relationship between metastatic human hepatocellular carcinoma (HCC) and MicroRNA-188-5p (miR-188) dysregulation using cell lines. METHODS: A decrease in miR-188 was detected in low and high metastatic HCC cells compared to that in normal hepatic cells and non-invasive cell lines. Gain- and loss-of-function experiments were performed in vitro to investigate the role of miR-188 in cancer cell (Hep3B, HepG2, HLF, and LM3) proliferation and migration. RESULTS: miR-188 mimic transfection inhibited the proliferation of metastatic HLF and LM3 cells but not non-invasive HepG2 and Hep3B cells; nonetheless, miR-188 suppression promoted the growth of HLF and LM3 cells. miR-188 upregulation inhibited the migratory rate and invasive capacity of HLF and LM3, rather than HepG2 and Hep3B cells, whereas transfection of a miR-188 inhibitor in HLF and LM3 cells had the opposite effects. Dual-luciferase reporter assays and bioinformatics prediction confirmed that miR-188 could directly target forkhead box N2 (FOXN2) in HLF and LM3 cells. Transfection of miR-188 mimics reduced FOXN2 levels, whereas miR-188 inhibition resulted in the opposite result, in HLF and LM3 cells. Overexpression of FOXN2 in HLF and LM3 cells abrogated miR-188 mimic-induced downregulation of proliferation, migration, and invasion. In addition, we found that miR-188 upregulation impaired tumor growth in vivo. CONCLUSIONS: In summary, this study showed thatmiR-188 inhibits the proliferation and migration of metastatic HCC cells by targeting FOXN2.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
8.
Plant Cell Rep ; 42(9): 1395-1417, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311877

RESUMO

KEY MESSAGE: This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.


Assuntos
Biotecnologia , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Genes Reguladores , Genótipo , Técnicas de Embriogênese Somática de Plantas
9.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674545

RESUMO

Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Melhoramento Vegetal , Fenótipo , Locos de Características Quantitativas
10.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675174

RESUMO

Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.


Assuntos
Arabidopsis , Arabidopsis/genética , Zea mays/genética , Zea mays/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Fertilidade/genética , Lipídeos , Regulação da Expressão Gênica de Plantas
11.
Plant Biotechnol J ; 20(8): 1470-1486, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403801

RESUMO

Grain size is one of the essential determinants of rice yield. Our previous studies revealed that ethylene plays an important role in grain-size control; however, the precise mechanism remains to be determined. Here, we report that the ethylene response factor OsERF115 functions as a key downstream regulator for ethylene-mediated grain development. OsERF115 encodes an AP2/ERF-type transcriptional factor that is specifically expressed in young spikelets and developing caryopses. Overexpression of OsERF115 significantly increases grain length, width, thickness and weight by promoting longitudinal elongation and transverse division of spikelet hull cells, as well as enhancing grain-filling activity, whereas its knockout mutations lead to the opposite effects, suggesting that OsERF115 positively regulates grain size and weight. OsERF115 transcription is strongly induced by ethylene, and OsEIL1 directly binds to the promoter to activate its expression. OsERF115 acts as a transcriptional repressor to directly or indirectly modulate a set of grain-size genes during spikelet growth and endosperm development. Importantly, haplotype analysis reveals that the SNP variations in the EIN3-binding sites of OsERF115 promoter are significantly associated with the OsERF115 expression levels and grain weight, suggesting that natural variations in the OsERF115 promoter contribute to grain-size diversity. In addition, the OsERF115 orthologues are identified only in grass species, implying a conserved and unique role in the grain development of cereal crops. Our results provide insights into the molecular mechanism of ethylene-mediated grain-size control and a potential strategy based on the OsEIL1-OsERF115-target gene regulatory module for genetic improvement of rice yield.


Assuntos
Oryza , Grão Comestível/genética , Grão Comestível/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Genetica ; 150(5): 299-316, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35536451

RESUMO

Breast cancer is a devastating malignancy, among which the luminal A (LumA) breast cancer is the most common subtype. In the present study, we used a comprehensive bioinformatics approach in the hope of identifying novel prognostic biomarkers for LumA breast cancer patients. Transcriptomic profiling of 611 LumA breast cancer patients was downloaded from TCGA database. Differentially expressed genes (DEGs) between tumor samples and controls were first identified by differential expression analysis, before being used for the weighted gene co-expression network analysis. The subsequent univariate Cox regression and LASSO algorithm were used to uncover key prognostic genes for constructing multivariate Cox regression model. Patients were stratified into high-risk and low-risk groups according to the risk score, and subjected to multiple downstream analyses including survival analysis, gene set enrichment analysis (GSEA), inference on immune cell infiltration and analysis of mutation burden. Receiving operator curve analysis was also performed. A total of 7071 DEGs were first identified by edgeR package, pink module was found significantly associated with invasive lobular carcinoma (ILC). 105 prognostic genes and 9 predictors were identified, allowing the identification of a 5-key prognostic genes (LRRC77P, CA3, BAMBI, CABP1, ATP8A2) after intersection. These 5 genes, and the resulting Cox model, displayed good prognostic performance. Furthermore, distinct differences existed between two risk-score stratified groups at various levels. The identified 5-gene prognostic model will help deepen the understanding of the molecular and immunological mechanisms that affect the survival of LumA-ILC patients and guide and proper monitoring of these patients.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Humanos , Fatores de Risco
13.
Arch Microbiol ; 204(3): 179, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35174423

RESUMO

A novel Gram-stain-negative, aerobic, motile and rod-shaped bacterium, designated as strain YIM B00319T, was isolated from a sediment sample obtained from Wuzunbulake salt Lake in Xinjiang Uygur Autonomous Region, northwest China. Phylogenetic analysis based on 16S rRNA gene sequences along with the whole genome showed that strain YIM B00319T belongs to the family Bacillaceae and was most closely related to Bacillus horti K13T and Caldalkalibacillus mannanilyticus JCM 10596T, with sequence similarities of 95.7% and 94.6%, respectively. The genome of strain YIM B00319T was 3.77 Mbp with a DNA G + C content of 43%. Strain YIM B00319T grew at 15-45 ℃, pH 7.0-9.5 and with 3-11% (w/v) NaCl. The major respiratory quinone of strain YIM B00319T was MK-7, and the major fatty acids (> 10%) were iso-C15:0, anteiso-C15:0, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The main polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and diphosphatidylglycerol (DPG). The cell-wall peptidoglycan contained meso-diaminopimelic acid. On the basis of the phenotypic, chemotaxonomic, genomic, and phylogenetic information, strain YIM B00319T represents a novel species of the genus Caldalkalibacillus, for which the name Caldalkalibacillus salinus sp. nov. is proposed. The type strain is YIM B00319T (= CGMCC 1.18750T = NBRC 115338T).


Assuntos
Bacillaceae , Lagos , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Lagos/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Arch Microbiol ; 204(9): 573, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36006481

RESUMO

A Gram-negative, aerobic, nonmotile, rod-shaped and yellow-pigment-producing bacteria was isolated from Baima snow mountain of Diqing Tibetan Autonomous Prefecture in Yunnan province, south-west China and characterized using a polyphasic approach. The results of 16S rRNA gene sequence similarity analysis showed that strain YIM B04101T was closely related to the type strain of Dyadobacter koreensis DSM 19938T (97.81%) and Dyadobacter frigoris AR-3-8T (97.95%). The predominant respiratory quinone was menaquinone-7 (MK-7). The major polar lipid was phosphatidylethanolamine. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), C18:1ω9c and C16:0. The DNA G + C content was 43.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM B04101T belonged to a cluster comprising species of the genus Dyadobacter. However, it differed from its closest relative, Dyadobacter koreensis KCTC 12537T and Dyadobacter frigoris AR-3-8T, in many physiological properties. Based on these phenotypic characteristics and phylogenetic distinctiveness, strain YIM B04101T is considered to be a novel species of the genus Dyadobacter, for which the name Dyadobacter diqingensis sp. nov. is proposed. The type strain is YIM B04101T (= CGMCC 1.19249T = CCTCC AB 2021270).


Assuntos
Ácidos Graxos , Neve , Técnicas de Tipagem Bacteriana , China , Cytophagaceae , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet
15.
J Org Chem ; 87(14): 9301-9306, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35758034

RESUMO

Crotonianoids A-C (1-3), three unusual tigliane diterpenoids, were isolated from the seeds of Croton tiglium. Compound 1 is a 13,14:13,15-diseco-tigliane featuring a unique spiro[bicyclo[5.3.0]decane-2,5'-2'(3'H,4'H)-furanone] core; 2 is a 13,15-seco-tigliane incorporating a rare peroxide bridge between C-13 and C-15; and 3 is the first example of a phorbol ester with a 10R-configuration. Their structures were determined by spectroscopic, computational, and X-ray diffraction methods. Compounds 1 and 2 markedly inhibited the growth and survival of prostate cancer cell C4-2B at micromolar concentrations and induced cell apoptosis. Mechanistic study revealed that 1 and 2 could suppress androgen receptor (AR) signaling pathway by promoting the degradation of AR protein.


Assuntos
Croton , Diterpenos , Neoplasias , Forbóis , Croton/química , Diterpenos/química , Estrutura Molecular , Forbóis/análise , Sementes/química
16.
Future Oncol ; 18(26): 2903-2917, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35861053

RESUMO

Aim: To first explore the prognostic value of MMP11 and MMP15 in hepatocellular carcinoma. Methods: MMP11/MMP15 expression was immunohistochemically detected and correlated with clinicopathologic variables and survival and confirmed in publicly available databases. An MMP-based risk score (MMPRS) was established. Results: Tumoral MMP11/MMP15 expression was higher and univariately associated with crucial clinicopathologic parameters, overall survival and disease-free survival in all patients and/or many subsets. Multivariately, MMP11/MMP15 expression remained significant. Their overexpression and prognostic value were confirmed in the Ualcan and Kaplan-Meier plotter databases. Critically, the novel MMPRS integrating MMP11, MMP15 and tumor-node-metastasis stage identified subgroups with the best and worst prognoses, with much higher predictive power. Conclusion: MMP11 and MMP15 served as prognosticators in hepatocellular carcinoma. MMPRS might work more accurately.


MMP11 and MMP15, involved in cancer dissemination, were found to have important biological functions in several cancers. However, their prognostic value in hepatocellular carcinoma (HCC) remains unknown. In the present study, it was found that MMP11 and MMP15 were overexpressed and predictive of the outcome of HCC. Moreover, the novel MMP-based risk score integrating MMP11, MMP15 and tumor­node­metastasis stage had much higher prognostic power. MMP11, MMP15 and especially the MMP-based risk score were identified as promising indicators of prognosis in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirurgia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 15 da Matriz , Prognóstico , Fatores de Risco
17.
Theor Appl Genet ; 134(2): 453-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33089345

RESUMO

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Pólen/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Mutação , Oryza/genética , Filogenia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas Proto-Oncogênicas c-myb/genética
18.
Proteome Sci ; 19(1): 7, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836751

RESUMO

BACKGROUND: The black soldier fly (Hermetia illucens) has significant economic potential. The larvae can be used in financially viable waste management systems, as they are voracious feeders able to efficiently convert low-quality waste into valuable biomass. However, most studies on H. illucens in recent decades have focused on optimizing their breeding and bioconversion conditions, while information on their biology is limited. METHODS: About 200 fifth instar well-fed larvae were sacrificed in this work. The liquid chromatography-tandem mass spectrometry and scanning electron microscopy were employed in this study to perform a proteomic and ultrastructural analysis of the peritrophic matrix (PM) of H. illucens larvae. RESULTS: A total of 565 proteins were identified in the PM samples of H. illucen, of which 177 proteins were predicted to contain signal peptides, bioinformatics analysis and manual curation determined 88 proteins may be associated with the PM, with functions in digestion, immunity, PM modulation, and others. The ultrastructure of the H. illucens larval PM observed by scanning electron microscopy shows a unique diamond-shaped chitin grid texture. CONCLUSIONS: It is the first and most comprehensive proteomics research about the PM of H. illucens larvae to date. All the proteins identified in this work has been discussed in details, except several unnamed or uncharacterized proteins, which should not be ignored and need further study. A comparison of the ultrastructure between H. illucens larval PM and those of other insects as observed by SEM indicates that the PM displays diverse textures on an ultra-micro scale and we suscept a unique diamond-shaped chitin grid texture may help H. illucens larval to hold more food. This work deepens our understanding of the molecular architecture and ultrastructure of the H. illucens larval PM.

19.
J Chem Inf Model ; 60(7): 3679-3686, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32501689

RESUMO

Signal peptides play an important role in guiding and transferring transmembrane proteins and secreted proteins. In recent years, with the explosive growth of protein sequences, computationally predicting signal peptides and their cleavage sites from protein sequences is highly desired. In this work, we present an improved approach, Signal-3L 3.0, for signal peptide recognition and cleavage-site prediction using a 3-layer hybrid method of integrating deep learning algorithms and window-based scoring. There are three main components in the Signal-3L 3.0 prediction engine: (1) a deep bidirectional long short-term memory (Bi-LSTM) network with a soft self-attention learns abstract features from sequences to determine whether a query protein contains a signal peptide; (2) the statistics propensity window-based cleavage site screening method is applied to generate the set of candidate cleavage sites; (3) the prediction of a conditional random field with a hybrid convolutional neural network (CNN) and Bi-LSTM is fused with the window-based score for identifying the final unique cleavage site. Experimental results on the benchmark datasets show that the new deep learning-driven Signal-3L 3.0 yields promising performance. The online server of Signal-3L 3.0 is available at http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/.


Assuntos
Aprendizado Profundo , Sinais Direcionadores de Proteínas , Algoritmos , Sequência de Aminoácidos , Redes Neurais de Computação
20.
Antonie Van Leeuwenhoek ; 113(12): 2155-2165, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33151459

RESUMO

A novel Gram-stain-positive, aerobic, cocci-shaped actinobacterium, designated YIM 75000T, was isolated from a soil sample collected from a dry-hot river valley in Yunnan Province, P.R. China. Growth was observed at 10-45 °C (optimal 37 °C), 0-8% (w/v) NaCl (optimal at 0-3% NaCl) and pH 6.0-8.0 (optimal at pH 7.3). The peptidoglycan contained LL-diaminopimelic acid, glycine, glutamic acid as well as alanine and its type was A3γ with an LL-Dpm-Gly interpeptide bridge. The major cellular fatty acids (> 10%) were C16:0, Summed In Feature 3 (C16:1 ω6c/C16:1 ω7c) and C17:1 ω8c. The predominant menaquinone was MK-9(H4). The major whole-cell sugars contained rhamnose, ribose, arabinose and mannose. The DNA G+C content was 77.0 mol%. The 16S rRNA gene sequence similarities of strain YIM 75000T with other species were less than 94%. Phylogenetic analyses based on 16S rRNA gene sequences and genome data, revealed that strain YIM 75000T together with the genus Motilibacter formed a distinct phylogenetic lineage within the phylum Actinobacteria, separating them from members of all orders. Strain YIM 75000T showed 73.4-73.7% average nucleotide identity and 19.5-19.7% digital DNA-DNA hybridization identity with the closely related genus Motilibacter. Based on the phenotypic, phylogenetic and chemotaxonomic data, it is proposed that the new isolate represents the nomenclature type of the novel species Vallicoccus soli gen. nov., sp. nov. (YIM 75000T = DSM 45377T = KCTC 49228T = CGMCC 1.13844T) which is the nomenclature type of the novel genus Vallicoccus gen. nov. within Vallicoccaceae fam. nov and Motilibacterales ord. nov in the phylum Actinobacteria. The family Vallicoccaceae fam. nov. and the order Motilibacterales (contains Vallicoccaceae fam. nov. and Motilibacteraceae Lee 2013) ord. nov. are formally proposed.


Assuntos
Actinobacteria , Solo , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA