Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(14): 2434-2451.e17, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764089

RESUMO

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike-specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S, and Novavax NVX-CoV2373 were examined longitudinally for 6 months 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though only detectable in 60-67% of subjects at 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in antibodies, while memory T and B cells were comparatively stable. These results may also be relevant for insights against other pathogens.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , Memória Imunológica , SARS-CoV-2
2.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139340

RESUMO

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Assuntos
Vacinas contra COVID-19/imunologia , Células B de Memória/imunologia , Células T de Memória/imunologia , SARS-CoV-2/imunologia , Ad26COVS1/administração & dosagem , Ad26COVS1/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Células B de Memória/metabolismo , Células T de Memória/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
3.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202565

RESUMO

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

4.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
5.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37735592

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

6.
Cell ; 183(5): 1340-1353.e16, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33096020

RESUMO

The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present single-cell transcriptomic analysis of >100,000 viral antigen-reactive CD4+ T cells from 40 COVID-19 patients. In hospitalized patients compared to non-hospitalized patients, we found increased proportions of cytotoxic follicular helper cells and cytotoxic T helper (TH) cells (CD4-CTLs) responding to SARS-CoV-2 and reduced proportion of SARS-CoV-2-reactive regulatory T cells (TREG). Importantly, in hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness, which correlated negatively with antibody levels to SARS-CoV-2 spike protein. Polyfunctional TH1 and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide insights into the gene expression patterns of SARS-CoV-2-reactive CD4+ T cells in distinct disease severities.


Assuntos
COVID-19/imunologia , SARS-CoV-2/genética , Células T Auxiliares Foliculares/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Contagem de Linfócito CD4 , COVID-19/epidemiologia , COVID-19/virologia , Estudos de Coortes , Inglaterra/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Análise de Célula Única/métodos , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32473127

RESUMO

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito T , Pneumonia Viral/imunologia , Betacoronavirus/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Convalescença , Infecções por Coronavirus/sangue , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Reações Cruzadas , Humanos , Leucócitos Mononucleares/imunologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/metabolismo , Vacinas Virais/imunologia
8.
Cell ; 183(4): 996-1012.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010815

RESUMO

Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2.


Assuntos
Imunidade Adaptativa , Antígenos Virais/imunologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença , Adulto Jovem
9.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931734

RESUMO

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Assuntos
Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Pneumonia Viral/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Vacinas Virais/administração & dosagem
10.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961317

RESUMO

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , RNA Mensageiro/genética , Síndrome , Vacinação , Proteínas do Envelope Viral
11.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34453880

RESUMO

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Células Th1/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Vacina BNT162 , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Memória Imunológica , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Adulto Jovem
12.
Nature ; 603(7901): 488-492, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35102311

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Imunidade Celular , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Vacinas contra COVID-19/imunologia , Convalescença , Hospitalização , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/química , SARS-CoV-2/classificação
13.
PLoS Pathog ; 20(7): e1012339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950078

RESUMO

The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.


Assuntos
COVID-19 , Memória Imunológica , Interleucina-10 , Macaca mulatta , Células T de Memória , SARS-CoV-2 , Animais , Interleucina-10/imunologia , Interleucina-10/metabolismo , COVID-19/imunologia , SARS-CoV-2/imunologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Memória Imunológica/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Modelos Animais de Doenças , Interferon gama/metabolismo , Interferon gama/imunologia , Linfócitos T/imunologia
14.
J Infect Dis ; 229(4): 1059-1067, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624979

RESUMO

While the immunogenicity of SARS-CoV-2 vaccines has been well described in adults, pediatric populations have been less studied. In particular, children with type 1 diabetes are generally at elevated risk for more severe disease after infections, but are understudied in terms of COVID-19 and SARS-CoV-2 vaccine responses. We investigated the immunogenicity of COVID-19 mRNA vaccinations in 35 children with type 1 diabetes (T1D) and 23 controls and found that these children develop levels of SARS-CoV-2 neutralizing antibody titers and spike protein-specific T cells comparable to nondiabetic children. However, in comparing the neutralizing antibody responses in children who received 2 doses of mRNA vaccines (24 T1D; 14 controls) with those who received a third, booster dose (11 T1D; 9 controls), we found that the booster dose increased neutralizing antibody titers against ancestral SARS-CoV-2 strains but, unexpectedly, not Omicron lineage variants. In contrast, boosting enhanced Omicron variant neutralizing antibody titers in adults.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Adulto , Humanos , Criança , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinas de mRNA , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
15.
Int Immunol ; 35(8): 353-359, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148294

RESUMO

In this brief opinion piece, we highlight our studies characterizing adaptive SARS-CoV-2 immune responses in infection and vaccination, and the ability of SARS-CoV-2-specific T cells to recognize emerging variants of concern, and the role of pre-existing cross-reactive T cells. In the context of the debate on correlates of protection, the pandemic's progression in the past 3 years underlined the need to consider how different adaptive immune responses might differentially contribute to protection from SARS-CoV-2 infection versus COVID-19 disease. Lastly, we discuss how cross-reactive T cell responses may be useful in generating a broad adaptive immunity, recognizing different variants and viral families. Considering vaccines with broadly conserved antigens could improve preparedness for future infectious disease outbreaks.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação , Imunidade Adaptativa
16.
Photochem Photobiol Sci ; 23(7): 1265-1278, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789913

RESUMO

Knowledge of long-term time trends of solar ultraviolet (UV) radiation on ground level is of high scientific interest. For this purpose, precise measurements over a long time are necessary. One of the challenges solar UV monitoring faces is the permanent and gap-free data collection over several decades. Data gaps hamper the formation and comparison of monthly or annual means, and, in the worst case, lead to incorrect conclusions in further data evaluation and trend analysis of UV data. For estimating data to fill gaps in long-term UV data series (daily radiant exposure and highest daily irradiance), we developed three statistical imputation methods: a model-based imputation, considering actual local solar radiation conditions using predictors correlated to the local UV values in an empirical model; an average-based imputation based on a statistical approach of averaging available local UV measurement data without predictors; and a mixture of these two imputation methods. A detailed validation demonstrates the superiority of the model-based imputation method. The combined method can be considered the best one in practice. Furthermore, it has been shown that the model-based imputation method can be used as an useful tool to identify systematic errors at and between calibration steps in long-term erythemal UV data series.

18.
Nature ; 546(7660): 656-661, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28636593

RESUMO

Genetic studies have shown the association of Parkinson's disease with alleles of the major histocompatibility complex. Here we show that a defined set of peptides that are derived from α-synuclein, a protein aggregated in Parkinson's disease, act as antigenic epitopes displayed by these alleles and drive helper and cytotoxic T cell responses in patients with Parkinson's disease. These responses may explain the association of Parkinson's disease with specific major histocompatibility complex alleles.


Assuntos
Doença de Parkinson/imunologia , Linfócitos T/imunologia , alfa-Sinucleína/imunologia , Idoso , Idoso de 80 Anos ou mais , Alelos , Sequência de Aminoácidos , Autoimunidade , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Linfócitos T/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia , alfa-Sinucleína/química
20.
Clin Infect Dis ; 75(Suppl 1): S24-S29, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35441229

RESUMO

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began 2 years ago, the scientific community has swiftly worked to understand the transmission, pathogenesis, and immune response of this virus to implement public health policies and ultimately project an end to the pandemic. In this perspective, we present our work identifying SARS-CoV-2 epitopes to quantify T-cell responses and review how T cells may help protect against severe disease. We examine our prior studies which demonstrate durable humoral and cell-mediated memory in natural infection and vaccination. We discuss how SARS-CoV-2-specific T cells from either natural infection or vaccination can recognize emerging variants of concern, suggesting that the currently approved vaccines may be sufficient. We also discuss how pre-existing cross-reactive T cells promote rapid development of immune memory to SARS-CoV-2. We finally posit how identifying SARS-CoV-2 epitopes can help us develop a pan-coronavirus vaccine to prepare for future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Imunidade Adaptativa , Vacinas contra COVID-19 , Epitopos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA