Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104937, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331598

RESUMO

Mitochondria are essential organelles whose proteome is well protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the matrix AAA-ATPase (m-AAA) (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's autoproteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.


Assuntos
Proteases Dependentes de ATP , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respiração Celular
2.
J Biol Chem ; 299(12): 105346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838170

RESUMO

Nsp3s are the largest nonstructural proteins of coronaviruses. These transmembrane proteins include papain-like proteases (PLpro) that play essential roles in cleaving viral polyproteins into their mature units. The PLpro of SARS-CoV viruses also have deubiquitinating and deISGylating activities. As Nsp3 is an endoplasmic reticulum (ER)-localized protein, we asked if the deubiquitinating activity of SARS-CoV-2 PLpro affects proteins that are substrates for ER-associated degradation (ERAD). Using full-length Nsp3 as well as a truncated transmembrane form we interrogated, by coexpression, three potential ERAD substrates, all of which play roles in regulating lipid biosynthesis. Transmembrane PLpro increases the level of INSIG-1 and decreases its ubiquitination. However, different effects were seen with SREBP-1 and SREBP-2. Transmembrane PLpro cleaves SREBP-1 at three sites, including two noncanonical sites in the N-terminal half of the protein, resulting in a decrease in precursors of the active transcription factor. Conversely, cleavage of SREBP-2 occurs at a single canonical site that disrupts a C-terminal degron, resulting in increased SREBP-2 levels. When this site is mutated and the degron can no longer be interrupted, SREBP-2 is still stabilized by transmembrane PLpro, which correlates with a decrease in SREBP-2 ubiquitination. All of these observations are dependent on PLpro catalytic activity. Our findings demonstrate that, when anchored to the ER membrane, SARS-CoV-2 Nsp3 PLpro can function as a deubiquitinating enzyme to stabilize ERAD substrates. Additionally, SARS-CoV-2 Nsp3 PLpro can cleave ER-resident proteins, including at sites that could escape analyses based on the established consensus sequence.


Assuntos
COVID-19 , Retículo Endoplasmático , Peptídeo Hidrolases , SARS-CoV-2 , Humanos , COVID-19/virologia , Retículo Endoplasmático/enzimologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/enzimologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ubiquitina/metabolismo , Células HeLa , Células HEK293 , Proteólise , Estabilidade Proteica , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
3.
PLoS Biol ; 19(12): e3001474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879065

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitinação
4.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000579

RESUMO

Botulinum neurotoxins are some of the most potent natural toxins known; they cause flaccid paralysis by inhibiting synaptic vesicle release. Some serotypes, notably serotype A and B, can cause persistent paralysis lasting for several months. Because of their potency and persistence, botulinum neurotoxins are now used to manage several clinical conditions, and there is interest in expanding their clinical applications using engineered toxins with novel substrate specificities. It will also be beneficial to engineer toxins with tunable persistence. We have investigated the potential use of small-molecule proteolysis-targeting chimeras (PROTACs) to vary the persistence of modified recombinant botulinum neurotoxins. We also describe a complementary approach that has potential relevance for botulism treatment. This second approach uses a camelid heavy chain antibody directed against botulinum neurotoxin that is modified to bind the PROTAC. These strategies provide proof of principle for the use of two different approaches to fine tune the persistence of botulinum neurotoxins by selectively targeting their catalytic light chains for proteasomal degradation.


Assuntos
Toxinas Botulínicas , Proteólise , Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Humanos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Quimera de Direcionamento de Proteólise
5.
Nat Rev Mol Cell Biol ; 12(9): 605-20, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21860393

RESUMO

Ubiquitylation (also known as ubiquitination) regulates essentially all of the intracellular processes in eukaryotes through highly specific modification of numerous cellular proteins, which is often tightly regulated in a spatial and temporal manner. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Cadeia Alimentar , Humanos , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/fisiologia , Senso de Humor e Humor como Assunto
6.
Pharmacol Rev ; 72(2): 380-413, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32107274

RESUMO

Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.


Assuntos
Engenharia de Proteínas/métodos , Ubiquitinas/metabolismo , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Ubiquitinação
7.
Mol Cell ; 50(4): 516-27, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23665230

RESUMO

Cue1p is an integral component of yeast endoplasmic reticulum (ER)-associated degradation (ERAD) ubiquitin ligase (E3) complexes. It tethers the ERAD ubiquitin-conjugating enzyme (E2), Ubc7p, to the ER and prevents its degradation, and also activates Ubc7p via unknown mechanisms. We have now determined the crystal structure of the Ubc7p-binding region (U7BR) of Cue1p with Ubc7p. The U7BR is a unique E2-binding domain that includes three α-helices that interact extensively with the "backside" of Ubc7p. Residues essential for E2 binding are also required for activation of Ubc7p and for ERAD. We establish that the U7BR stimulates both RING-independent and RING-dependent ubiquitin transfer from Ubc7p. Moreover, the U7BR enhances ubiquitin-activating enzyme (E1)-mediated charging of Ubc7p with ubiquitin. This demonstrates that an essential component of E3 complexes can simultaneously bind to E2 and enhance its loading with ubiquitin. These findings provide mechanistic insights into how ubiquitination can be stimulated.


Assuntos
Proteínas de Transporte/química , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Enzimas de Conjugação de Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
8.
FASEB J ; 33(1): 1235-1247, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113882

RESUMO

Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Catálise , Linhagem Celular , Humanos , Cristalino/citologia , Cristalino/metabolismo , Proteólise , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
9.
Mol Cell ; 47(3): 331-2, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883621

RESUMO

Cullin ring ligases (CRLs) constitute the largest group of RING finger ubiquitin ligases. Two recent studies in Molecular Cell describe glomulin as a CRL1 inhibitor that blocks interactions with its ubiquitin-conjugating enzyme (E2) (Duda et al., 2012; Tron et al., 2012). These findings and their significance are discussed.

10.
Mol Cell ; 47(4): 547-57, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22748923

RESUMO

Mitochondria play central roles in integrating pro- and antiapoptotic stimuli, and JNK is well known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a nonphosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery.


Assuntos
Apoptose/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular Tumoral , Humanos , MAP Quinase Quinase 4/metabolismo , Mitocôndrias/enzimologia , Fosforilação , Proteólise , Proteínas Supressoras de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
11.
Proc Natl Acad Sci U S A ; 114(26): E5158-E5166, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28584101

RESUMO

Botulism is characterized by flaccid paralysis, which can be caused by intoxication with any of the seven known serotypes of botulinum neurotoxin (BoNT), all of which disrupt synaptic transmission by endoproteolytic cleavage of SNARE proteins. BoNT serotype A (BoNT/A) has the most prolonged or persistent effects, which can last several months, and exerts its effects by specifically cleaving and inactivating SNAP25. A major factor contributing to the persistence of intoxication is the long half-life of the catalytic light chain, which remains enzymatically active months after entry into cells. Here we report that BoNT/A catalytic light chain binds to, and is a substrate for, the ubiquitin ligase HECTD2. However, the light chain evades proteasomal degradation by the dominant effect of a deubiquitinating enzyme, VCIP135/VCPIP1. This deubiquitinating enzyme binds BoNT/A light chain directly, with the two associating in cells through the C-terminal 77 amino acids of the light chain protease. The development of specific DUB inhibitors, together with inhibitors of BoNT/A proteolytic activity, may be useful for reducing the morbidity and public health costs associated with BoNT/A intoxication and could have potential biodefense implications.


Assuntos
Toxinas Botulínicas Tipo A/farmacocinética , Toxinas Botulínicas Tipo A/toxicidade , Endopeptidases/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Endopeptidases/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
EMBO J ; 32(15): 2087-9, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23852447

RESUMO

Mutations in Parkin represent ~50% of disease-causing defects in autosomal recessive-juvenile onset Parkinson's disease (AR-JP). Recently, there have been four structural reports of autoinhibited forms of this RING-IBR-RING (RBR) ubiquitin ligase (E3) by the Gehring, Komander, Johnston and Shaw groups. The important advances from these studies set the stage for the next steps in understanding the molecular basis for Parkinson's disease (PD).


Assuntos
Mutação , Transtornos Parkinsonianos , Ubiquitina-Proteína Ligases , Animais , Humanos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
EMBO J ; 32(18): 2504-16, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23942235

RESUMO

RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin-conjugating enzymes (E2s) charged with ubiquitin. How low-affinity RING-E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high-affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR-induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2-binding sites coordinately facilitate processive ubiquitination.


Assuntos
Regulação Alostérica/fisiologia , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Conformação Proteica , Receptores do Fator Autócrino de Motilidade/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica
14.
Mol Cell ; 34(6): 674-85, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560420

RESUMO

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Assuntos
Receptores de Citocinas/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Domínios RING Finger , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/metabolismo , Receptores de Citocinas/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
15.
J Biol Chem ; 290(51): 30225-39, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26475854

RESUMO

RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Humanos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Biochim Biophys Acta ; 1843(1): 47-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23747565

RESUMO

RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/fisiologia , Animais , Ativação Enzimática , Humanos , Modelos Moleculares , Multimerização Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química
17.
Am J Respir Crit Care Med ; 189(1): 96-103, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24033344

RESUMO

Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on "Malformed Protein Structure and Proteostasis in Lung Diseases" was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment.


Assuntos
Pneumopatias/etiologia , Deficiências na Proteostase/etiologia , Envelhecimento , Pesquisa Biomédica , Descoberta de Drogas , Educação , Humanos , Pneumopatias/diagnóstico , Pneumopatias/terapia , National Heart, Lung, and Blood Institute (U.S.) , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/diagnóstico , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/terapia , Estados Unidos
18.
PLoS Biol ; 9(3): e1001038, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468305

RESUMO

Proteins are co-translationally inserted into the endoplasmic reticulum (ER) where they undergo maturation. Homeostasis in the ER requires a highly sensitive and selective means of quality control. This occurs through ER-associated degradation (ERAD).This complex ubiquitin-proteasome­mediated process involves ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3),lumenal and cytosolic chaperones, and other proteins, including the AAA ATPase p97 (VCP; Cdc48 in yeast). Probing of processes involving proteasomal degradation has generally depended on proteasome inhibitors or knockdown of specific E2s or E3s. In this issue of PLoS Biology, Ernst et al. demonstrate the utility of expressing the catalytic domain of a viral deubiquitylating enzyme to probe the ubiquitin system. Convincing evidence is provided that deubiquitylation is integral to dislocation of ERAD substrates from the ER membrane. The implications of this work for understanding ERAD and the potential of expressing deubiquitylating enzyme domains for studying ubiquitin-mediated processes are discussed.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Chaperonas Moleculares/metabolismo , Estresse Fisiológico , Ubiquitinação , Resposta a Proteínas não Dobradas/fisiologia
19.
J Cell Sci ; 124(Pt 9): 1403-10, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21502136

RESUMO

The ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase. We demonstrate that an early step in fusion, mitochondrial tethering, is dependent on the Fzo1 GTPase domain. Furthermore, the ubiquitin ligase SCF(Mdm30) (a SKP1-cullin-1-F-box complex that contains Mdm30 as the F-box protein), which targets Fzo1 for ubiquitylation and proteasomal degradation, is recruited to Fzo1 as a consequence of a GTPase-domain-dependent alteration in the mitofusin. Moreover, evidence is provided that neither Mdm30 nor proteasome activity are necessary for tethering of mitochondria. However, both Mdm30 and proteasomes are critical for MOM fusion. To better understand the requirement for the ubiquitin-proteasome system in mitochondrial fusion, we used the N-end rule system of degrons and determined that ongoing degradation of Fzo1 is important for mitochondrial morphology and respiration. These findings suggest a sequence of events in early mitochondrial fusion where Fzo1 GTPase-domain-dependent tethering leads to recruitment of SCF(Mdm30) and ubiquitin-mediated degradation of Fzo1, which facilitates mitochondrial fusion.


Assuntos
Proteínas F-Box/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Immunoblotting , Imunoprecipitação , Fusão de Membrana/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Cancer Cell ; 7(6): 547-59, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15950904

RESUMO

The p53 tumor suppressor protein is regulated by its interaction with HDM2, which serves as a ubiquitin ligase (E3) to target p53 for degradation. We have identified a family of small molecules (HLI98) that inhibits HDM2's E3 activity. These compounds show some specificity for HDM2 in vitro, although at higher concentrations effects on unrelated RING and HECT domain E3s are detectable, which could be due, at least in part, to effects on E2-ubiquitin thiol-ester levels. In cells, the compounds allow the stabilization of p53 and HDM2 and activation of p53-dependent transcription and apoptosis, although other p53-independent toxicity was also observed.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Quinases Ciclina-Dependentes/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Inibidores Enzimáticos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavinas/química , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estrutura Molecular , Ubiquitina-Proteína Ligases Nedd4 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Transfecção , Proteína Supressora de Tumor p53/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA