Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NAR Cancer ; 5(1): zcad010, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879683

RESUMO

Telomerase is a specialized reverse transcriptase that synthesizes telomeric repeats at the ends of linear chromosomes. Telomerase is transiently expressed in germ and stem cells, but nearly all somatic cells silence it after differentiating. However, the vast majority of cancer cells reactivate and constitutively express telomerase to maintain replicative immortality. Because of this, telomerase has remained a promising broad-spectrum chemotherapeutic target for over 30 years. However, various challenges associated with obtaining high-resolution structural data for telomerase have limited the development of rationally designed structure-based therapeutics. Various techniques and model systems have been utilized to advance our understanding of the structural biology of telomerase. In particular, multiple high-resolution cryogenic electron microscopy (cryo-EM) structures published within the past few years have revealed new components of the telomerase complex with near atomic resolution structural models. Additionally, these structures have provided details for how telomerase is recruited to telomeres and its mechanism of telomere synthesis. With these new pieces of evidence, and the promising outlook for future refinements to our current models, the possibility of telomerase specific chemotherapeutics is becoming more tangible than ever. This review summarizes these recent advancements and outlines outstanding questions in the field.

2.
Genes (Basel) ; 14(2)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36833208

RESUMO

Telomere biology disorders (TBDs) are a spectrum of diseases that arise from mutations in genes responsible for maintaining telomere integrity. Human telomerase reverse transcriptase (hTERT) adds nucleotides to chromosome ends and is frequently mutated in individuals with TBDs. Previous studies have provided insight into how relative changes in hTERT activity can lead to pathological outcomes. However, the underlying mechanisms describing how disease-associated variants alter the physicochemical steps of nucleotide insertion remain poorly understood. To address this, we applied single-turnover kinetics and computer simulations to the Tribolium castaneum TERT (tcTERT) model system and characterized the nucleotide insertion mechanisms of six disease-associated variants. Each variant had distinct consequences on tcTERT's nucleotide insertion mechanism, including changes in nucleotide binding affinity, rates of catalysis, or ribonucleotide selectivity. Our computer simulations provide insight into how each variant disrupts active site organization, such as suboptimal positioning of active site residues, destabilization of the DNA 3' terminus, or changes in nucleotide sugar pucker. Collectively, this work provides a holistic characterization of the nucleotide insertion mechanisms for multiple disease-associated TERT variants and identifies additional functions of key active site residues during nucleotide insertion.


Assuntos
Telomerase , Humanos , Telomerase/genética , Nucleotídeos , Telômero/metabolismo , DNA/química , Mutação
3.
DNA Repair (Amst) ; 107: 103198, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371388

RESUMO

Telomeres at the ends of linear chromosomes are essential for genome maintenance and sustained cellular proliferation, but shorten with each cell division. Telomerase, a specialized reverse transcriptase with its own integral RNA template, compensates for this by lengthening the telomeric 3' single strand overhang. Mammalian telomerase has the unique ability to processively synthesize multiple GGTTAG repeats, by translocating along its product and reiteratively copying the RNA template, termed repeat addition processivity (RAP). This unusual form of processivity is distinct from the nucleotide addition processivity (NAP) shared by all other DNA polymerases. In this review, we focus on the minimally active human telomerase catalytic core consisting of the telomerase reverse transcriptase (TERT) and the integral RNA (TR), which catalyzes DNA synthesis. We review the mechanisms by which oxidatively damaged nucleotides, and anti-viral and anti-cancer nucleotide drugs affect the telomerase catalytic cycle. Finally, we offer perspective on how we can leverage telomerase's unique properties, and advancements in understanding of telomerase catalytic mechanism, to selectively manipulate telomerase activity with therapeutics, particularly in cancer treatment.


Assuntos
Telomerase
4.
Nat Commun ; 11(1): 5288, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082336

RESUMO

Telomerase is a specialized reverse transcriptase that adds GGTTAG repeats to chromosome ends and is upregulated in most human cancers to enable limitless proliferation. Here, we uncover two distinct mechanisms by which naturally occurring oxidized dNTPs and therapeutic dNTPs inhibit telomerase-mediated telomere elongation. We conduct a series of direct telomerase extension assays in the presence of modified dNTPs on various telomeric substrates. We provide direct evidence that telomerase can add the nucleotide reverse transcriptase inhibitors ddITP and AZT-TP to the telomeric end, causing chain termination. In contrast, telomerase continues elongation after inserting oxidized 2-OH-dATP or therapeutic 6-thio-dGTP, but insertion disrupts translocation and inhibits further repeat addition. Kinetics reveal that telomerase poorly selects against 6-thio-dGTP, inserting with similar catalytic efficiency as dGTP. Furthermore, telomerase processivity factor POT1-TPP1 fails to restore processive elongation in the presence of inhibitory dNTPs. These findings reveal mechanisms for targeting telomerase with modified dNTPs in cancer therapy.


Assuntos
Inibidores Enzimáticos/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiguanina/química , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/química , Humanos , Cinética , Modelos Moleculares , Oxirredução , Complexo Shelterina , Telomerase/química , Telomerase/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros
5.
Elife ; 92020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501800

RESUMO

Telomerase extends telomere sequences at chromosomal ends to protect genomic DNA. During this process it must select the correct nucleotide from a pool of nucleotides with various sugars and base pairing properties, which is critically important for the proper capping of telomeric sequences by shelterin. Unfortunately, how telomerase selects correct nucleotides is unknown. Here, we determined structures of Tribolium castaneum telomerase reverse transcriptase (TERT) throughout its catalytic cycle and mapped the active site residues responsible for nucleoside selection, metal coordination, triphosphate binding, and RNA template stabilization. We found that TERT inserts a mismatch or ribonucleotide ~1 in 10,000 and ~1 in 14,000 insertion events, respectively. At biological ribonucleotide concentrations, these rates translate to ~40 ribonucleotides inserted per 10 kilobases. Human telomerase assays determined a conserved tyrosine steric gate regulates ribonucleotide insertion into telomeres. Cumulatively, our work provides insight into how telomerase selects the proper nucleotide to maintain telomere integrity.


Assuntos
DNA/metabolismo , Nucleotídeos/metabolismo , Telomerase/metabolismo , Animais , Pareamento de Bases/genética , Domínio Catalítico , DNA/química , DNA/genética , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Moleculares , Nucleotídeos/química , Nucleotídeos/genética , Ligação Proteica , Telomerase/química , Telomerase/genética , Tribolium/enzimologia , Tribolium/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA