Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 540(7631): 104-108, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905442

RESUMO

The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.


Assuntos
Atmosfera/química , Ciclo do Carbono , Carbono/análise , Geografia , Aquecimento Global , Solo/química , Bases de Dados Factuais , Ecossistema , Retroalimentação , Modelos Estatísticos , Reprodutibilidade dos Testes , Temperatura
2.
PLoS One ; 18(4): e0285030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115765

RESUMO

The Normalized Difference Vegetation Index (NDVI), derived from reflected visible and infrared radiation, has been critical to understanding change across the Arctic, but relatively few ground truthing efforts have directly linked NDVI to structural and functional properties of Arctic tundra ecosystems. To improve the interpretation of changing NDVI within moist acidic tundra (MAT), a common Arctic ecosystem, we coupled measurements of NDVI, vegetation structure, and CO2 flux in seventy MAT plots, chosen to represent the full range of typical MAT vegetation conditions, over two growing seasons. Light-saturated photosynthesis, ecosystem respiration, and net ecosystem CO2 exchange were well predicted by NDVI, but not by vertically-projected leaf area, our nondestructive proxy for leaf area index (LAI). Further, our data indicate that NDVI in this ecosystem is driven primarily by the biochemical properties of the canopy leaves of the dominant plant functional types, rather than purely the amount of leaf area; NDVI was more strongly correlated with top cover and repeated cover of deciduous shrubs than other plant functional types, a finding supported by our data from separate "monotypic" plots. In these pure stands of a plant functional type, deciduous shrubs exhibited higher NDVI than any other plant functional type. Likewise, leaves from the two most common deciduous shrubs, Betula nana and Salix pulchra, exhibited higher leaf-level NDVI than those from the codominant graminoid, Eriophorum vaginatum. Our findings suggest that recent increases in NDVI in MAT in the North American Arctic are largely driven by expanding deciduous shrub canopies, with substantial implications for MAT ecosystem function, especially net carbon uptake.


Assuntos
Dióxido de Carbono , Ecossistema , Alaska , Regiões Árticas , Tundra , Plantas
3.
Paleoceanogr Paleoclimatol ; 38(4)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37990699

RESUMO

Triple oxygen isotope ratios Δ'17O offer new opportunities to improve reconstructions of past climate by quantifying evaporation, relative humidity, and diagenesis in geologic archives. However, the utility of Δ'17O in paleoclimate applications is hampered by a limited understanding of how precipitation Δ'7O values vary across time and space. To improve applications of Δ'17O, we present δ18O, d-excess, and Δ'17O data from 26 precipitation sites in the western and central United States and three streams from the Willamette River Basin in western Oregon. In this data set, we find that precipitation Δ'17O tracks evaporation but appears insensitive to many controls that govern variation in δ18O, including Rayleigh distillation, elevation, latitude, longitude, and local precipitation amount. Seasonality has a large effect on Δ'17O variation in the data set and we observe higher seasonally amount-weighted average precipitation Δ'17O values in the winter (40 ± 15 per meg [± standard deviation]) than in the summer (18 ± 18 per meg). This seasonal precipitation Δ'17O variability likely arises from a combination of sub-cloud evaporation, atmospheric mixing, moisture recycling, sublimation, and/or relative humidity, but the data set is not well suited to quantitatively assess isotopic variability associated with each of these processes. The seasonal Δ'17O pattern, which is absent in d-excess and opposite in sign from δ18O, appears in other data sets globally; it showcases the influence of seasonality on Δ'17O values of precipitation and highlights the need for further systematic studies to understand variation in Δ'17O values of precipitation.

4.
Sci Rep ; 5: 10295, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26023728

RESUMO

Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ(18)O, δ(2)H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ(18)O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle.

5.
Oecologia ; 87(4): 459-466, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313686

RESUMO

The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors, oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive effect annual or perennial grasses have on soil nitrogen content.

6.
Oecologia ; 74(3): 330-334, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312468

RESUMO

Nitrogen partitioning among three generations of tillers within the bunchgrass Schizachyrium scoparium var. frequens was investigated in a controlled environment as a potential mechanism of herbivory tolerance. Nitrogen-15 was transported from the labelled primary tiller generation to both shoots and roots of nondefoliated secondary and tertiary tiller generations within 24 h. Partial defoliation increased shoot nitrogen concentration of secondary and tertiary generation tillers by 110 and 120%, respectively, 24 h following defoliation. Shoot nitrogen concentration was preferentially increased by partial defoliation of tertiary generation tillers throughout the 120 h experimental period, but diminished to concentrations comparable to nondefoliated tillers within shoots of the secondary generation at 72 h. In contrast to nitrogen concentration, the total amount of nitrogen imported by secondary and tertiary generation tillers decreased 62 and 73%, respectively, 24 h following partial defoliation and did not attain values comparable to respective nondefoliated tillers. Consequently, preferential nitrogen concentration occurred in response to partial tiller defoliation without an increase in total nitrogen import based on the reduction in the total nitrogen requirement per tiller generation associated with defoliation. Estimates of both the total amount of nitrogen import and nitrogen concentration are necessary to accurately interpret the dynamics of intertiller nitrogen allocation.

7.
Oecologia ; 117(4): 504-512, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28307675

RESUMO

We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs.

8.
Oecologia ; 96(4): 537-547, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312460

RESUMO

Blue oak (Quercus douglasii) is a deciduous tree species endemic to California that currently exhibits poor seedling survival to sapling age classes. We used common garden techniques to examine how genetic variation at regional and local scales affected phenotypic expression in traits affecting oak seedling growth and survival. Between-population variation was examined for seedlings grown from acorns collected from a northern, mesic population and a southern, xeric population. Within-population variation was examined by comparing seedlings from different maternal families within the mesic population. Acorns were planted into neighborhoods of an annual dicot (Erodium botrys), an annual grass (Bromus diandrus), and a perennial bunchgrass (Nassella pulchra). By varying the species composition of herbaceous neighborhoods into which acorns were planted, the interactive effects of competition and acorn germplasm source on phenotypic expression could also be examined. Potential maternal effects, expressed as variation in acorn size, were assessed by weighing each acorn before planting. Probability of seedling emergence increased significantly with acorn size in the xeric population but not in the mesic population. Similarly, the effect of acorn size on seedling leaf area, stem weight, and root weight was also population-dependent. At a within-population level, acorn size effects on seedling traits varied significantly among maternal families. In addition to acorn size effects, rates of oak seedling emergence were also dependent on an interaction of population source and competitive environment. Interactions between maternal family and competitive environment in the expression of seedling leaf characters suggest the possibility of genetic variation for plasticity in traits such as specific leaf area. Using carbon isotope discrimination (Δ) as an index of relative water-use efficiency (WUE), higher water use efficiency was indicated for oak seedlings grown in the annual plant neighborhoods compared to seedlings grown in the bunchgrass neighborhood. This trend may represent an adaptive plastic response because, compared to the bunchgrass neighborhood, soil water depletion was more rapid within annual plant neighborhoods.

9.
Oecologia ; 120(3): 375-385, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28308014

RESUMO

To ascertain whether browsing or hydrologic conditions influence the physiological performance of Salix and whether Salix and graminoids (Carex) use and possibly compete for similar water resources, we quantified the in situ seasonal patterns of plant water and carbon relations over three growing seasons. Our studies were designed to address the physiological factors which may be responsible for poor woody plant regeneration in montane riparian habitats of Rocky Mountain National Park, Colo. As these systems act to insure the delivery of fresh water to downstream users, the maintenance of their integrity is critical. We quantified plant water potentials, instantaneous rates of carbon fixation, leaf carbon isotope discrimination (Δ), leaf nitrogen content and water sources using stable isotopes of water (δ18O). The carbon and water relations of Salix were significantly affected by winter browsing by elk and in some cases by landscape position with regard to proximity to active streams. Winter browsing of Salix by elk significantly increased summer plant water potentials and integrative measures of gas exchange (Δ), though browsing did not consistently affect instantaneous rates of photosynthesis, leaf nitrogen or the sources of water used by Salix. No effect of experimental manipulations of surface water conditions on Salix physiology was observed, likely due to the mesic nature of our study period. Using a two-member linear mixing model, from δ18O values we calculated that Salix appears to rely on streams for approximately 80% of its water. In contrast, the graminoid Carex derives almost 50% of its water from rainfall, indicating divergent water source use by these two life forms. Based on these findings, winter browsing by elk improved Salix water balance possibly by altering the shoot to root ratio which in turn leads to higher water potentials and higher degrees of season-long gas exchange, while experimental damming had in general no effect on the physiological performance of Salix plants. In addition, as the water sources of Salix and Carex were significantly different, competition for water may not influence the growth, development, and regeneration of Salix. Thus, under the conditions of our study, herbivory had a positive effect on the physiological performance of Salix, but it is still unclear whether these changes in physiology transcend into improved Salix regeneration and survivorship. However, under drier environmental conditions such as lower snowpacks and lower stream flows, the browsing resistance of Salix and ecosystem regeneration may be greatly hindered because the reliance of Salix on stream water makes it vulnerable to changes in surface water and hydrological conditions.

10.
Oecologia ; 67(2): 209-212, 1985 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28311310

RESUMO

Carbon allocation among bunchgrass tillers was examined with carbon-11 (11CO2) steady state labelling. Labelled carbon was continuously transported from parent tillers to anatomically attached daughter tillers at a time when morphological characteristics indicated that tiller maturation had occurred. Steady state levels of import into monitored daughter tillers increased within 30 min of either defoliation or shading. Import levels decreased within 30 min of the removal of shading, but remained accelerated throughout an 84 h observation period following defoliation. A second defoliation further increased carbon import into a monitored tiller above the previously accelerated level resulting from the initial defoliation. Carbon import by vegetative tillers in the two bunchgrass species examined may be most appropriately viewed as a series of potentially accelerated import levels above a low level of continuous import.

11.
Oecologia ; 102(4): 478-489, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28306891

RESUMO

Opportunities exist in high Arctic polar semidesert communities for colonisation of unvegetated ground by long-lived clonal plants such as Dryas octopetala. This can be achieved by lateral spread of vegetative ramets, or by sexual reproduction and seedling recruitment. The objectives of this study were (1) to determine whether these two means of proliferation show differential sensitivity to contrasting components of the abiotic environment (temperature, soil nutrient and water availability) and (2) to evaluate the potential for D. octopetala to respond to climate change by an increase in cover and biomass in polar semi-desert communities. Factorial environmental manipulations of growing season temperature, soil nutrient and water status were conducted over 3 years at a polar semi-desert community in Svalbard, Norway (78°56.12'N, 11°50.4'E) and both clonal and sexual reproductive performance, together with instantaneous net photosynthesis (Pn), were recorded during the third season (1993). D. octopetala capitalised rapidly on an amelioration in the availability of inorganic nutrients (N, P and K) by an expansion in leaf area and biomass supported by increased Pn per unit leaf weight, and by apparent luxury uptake of nutrients (particularly P). Several facets of sexual reproductive development and seed viability were markedly improved by elevated temperatures or soil nutrient availability. Thus although D. octopetala is a long-lived clonal plant, with many traits characteristic of stress resistance syndrome, it showed considerable phenotypic plasticity in response to environmental manipulations. The results support the hypothesis that clonal growth confers survival potential during unfavourable years, together with the ability to capitalise on nutrient flushes and recycle nutrients internally. Continued investment in sexual reproduction ensures that seed setting is successful during favourable years, even if these occur infrequently. Cimate warming in the high Arctic could thus result in changes in the cover, biomass and the relative significance of clonal versus sexual proliferation of D. octopetala (and thus the genetic diversity of the population) but the long-term responses will probably be constrained by lack of available nutrients.

12.
Oecologia ; 95(4): 463-469, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28313284

RESUMO

Integrative ecophysiological and vegetative responses of Dryas octopetala were measured in response to field perturbations of temperature, precipitation and their interactions in a polar semi-desert in Svalbard, Norway (79°N, 12°E). Leaf carbon isotope discrimination (Δ), total leaf nitrogen concentration and leaf development were determined for photosynthetic leaves collected during the last week of August 1991, after one season of manipulations. Individual leaf weight and the total mass of leaf tissue were significantly lower when water was added, irrespective of temperature regime. Leaf carbon isotope discrimination and estimated long-term c i/c avalues (the ratio of CO2 concentration in leaf intercellular spaces to that in the atmosphere) were significantly higher under all three field manipulation treatments, and Δ was significantly reduced when Dryas was grown under drought conditions in a related greenhouse study. Nitrogen concentrations of plants from the field experiment were significantly lower under warmed conditions regardless of water regime. Our results indicate that changes in environmental conditions in high arctic settings will result in alterations of Dryas leaf gas exchange, as expressed by increases in carbon isotope discrimination, which may be accompanied by shifts in leaf nitrogen content and leaf biomass.

13.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120481, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23836787

RESUMO

The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.


Assuntos
Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Plantas/classificação , Regiões Árticas , Flores/crescimento & desenvolvimento , Internacionalidade , Modelos Biológicos , Folhas de Planta , Estações do Ano , Fatores de Tempo
14.
New Phytol ; 179(2): 440-448, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19086291

RESUMO

Although global change is known to influence plant invasion, little is known about interactions between altered precipitation and invasion. In the North American mixedgrass prairie, invasive species are often abundant in wet and nitrogen (N)-rich areas, suggesting that predicted changes in precipitation and N deposition could exacerbate invasion. Here, this possibility was tested by seeding six invasive species into experimental plots of mixedgrass prairie treated with a factorial combination of increased snow, summer irrigation, and N addition. Without added snow, seeded invasive species were rarely observed. Snow addition increased average above-ground biomass of Centaurea diffusa from 0.026 to 66 g m(-2), of Gypsophila paniculata from 0.1 to 7.3 g m(-2), and of Linaria dalmatica from 5 to 101 g m(-2). Given added snow, summer irrigation increased the density of G. paniculata, and N addition increased the density and biomass of L. dalmatica. Plant density responses mirrored those of plant biomass, indicating that increases in biomass resulted, in part, from increases in recruitment. In contrast to seeded invasive species, resident species did not respond to snow addition. These results suggest that increases in snowfall or variability of snowfall may exacerbate forb invasion in the mixedgrass prairie.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Poaceae/fisiologia , Neve , Biomassa , Solo/análise , Água/química , Wyoming
15.
Science ; 310(5748): 657-60, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16179434

RESUMO

A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.


Assuntos
Efeito Estufa , Alaska , Regiões Árticas , Picea , Estações do Ano , Árvores
16.
Int J Sports Med ; 12(6): 557-62, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1797697

RESUMO

This study was conducted to develop a testing protocol which would determine the extent of upper-body power output decrements in subjects following weight loss. Five athletes who had trained via upper-body exercise performed a 6-minute variable intensity arm crank test on an isokinetic ergometer before and after a 3-day, 4.5% body weight loss. Blood samples were drawn from a forearm vein pre- and 1, 3, and 5 min post-arm cranking for assessment of lactate, pH, hemoglobin, and hematocrit. The work performed pre-weight loss was significantly (paired t-test, p less than 0.05) greater than that performed post-weight loss. Repeated measures ANOVA yielded no significant differences in blood variables; however, pre-weight loss lactate values were higher and hemoglobin, hematocrit, and pH values were lower than post-weight loss values. It was concluded that a 4.5% body weight reduction resulted in performance decrements during this arm crank test. Survey information obtained from collegiate wrestlers (n = 14) subsequently tested under this protocol indicates the physical demands of this test approximate the physical demands of actual wrestling competition. It would therefore be appropriate to use this protocol during future testing of wrestlers in weight loss studies.


Assuntos
Resistência Física , Redução de Peso , Luta Romana , Adulto , Desidratação/fisiopatologia , Teste de Esforço , Glicogênio/análise , Humanos , Lactatos/sangue , Masculino , Educação Física e Treinamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA