RESUMO
The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.
RESUMO
The synthesis and characterization of the first homoleptic open-shell transition metal phosphinidenide is presented. By reacting [MnL2] (L = -N(SiMe3)2) with [(sIDipp)PK] (sIDipp = 1,3-bis(2,6-di-iso-propylphenyl)-imidazolidine-2-ylidene), the formation of [Mn{P(sIDipp)}2] instead of the initially expected adduct [KMn{P(sIDipp)}L2] is observed. Interestingly, a solvent change from toluene to n-pentane leads to the formation of [(sIDipp)PK2(Et2O)4][MnL3] after work-up, which can be seen as intermediate in the formation process of [Mn{P(sIDipp)}2]. Contrary to manganese, the highly reducing phosphinidenide [(sIDipp)P]- cannot be stabilized in an analogous fashion by coordination to a low-coordinate high-spin iron(II) center.
RESUMO
Herein we describe the synthesis and characterization of a variety of new quasilinear metal(i/ii) silylamides of the type [M(N(Dipp)SiR3)2]0,- (M = Cr-Co) with different silyl substituents (SiR3 = SiPh3-nMen (n = 1-3), SiMe2(allyl)). By comparison of the solid state structures we show that in the case of phenyl substituents secondary metal-ligand interactions are suppressed upon reduction of the metal. Introduction of an allyl substituted silylamide gives divalent complexes with additional metal-π-alkene interactions with only weak activation of the C[double bond, length as m-dash]C bond but substantial bending of the principal N-M-N axis. 1e--reduction makes cobalt a more strongly bound alkene substituent, whereas for chromium, reduction and intermolecular dimerisation of the allyl unit are observed. It thus indicates that the general view of low-coordinate 3d-metal ions as electron deficient seems not to apply to anionic metal(i) complexes. Additionally, the obtained cobalt(i) complexes are reacted with an aryl azide giving trigonal imido metal complexes. These can be regarded as rare examples of high-spin imido cobalt compounds from their structural and solution magnetic features.
RESUMO
The synthesis and characterization of neutral quasilinear 3d-metal(i) complexes of chromium to cobalt of the type [KM(N(Dipp)SiMe3)2] (Dipp = 2,6-di-iso-propylphenyl) are reported. In solid state these metal(i) complexes either occur as isolated molecules (Co) or are part of a potassium ion linked 1D-coordination polymer (Cr-Fe). In solution the potassium cation is either ligated within the ligand sphere of the metal silylamide or is separated from the complex depending on the solvent. For iron, we showcase that it is possible to use sodium or lithium metal for the reduction of the metal(ii) precursor. However, in these cases the resulting iron(i) complexes can only be isolated upon cation separation using an appropriate crown-ether. Further, the neutral metal(i) complexes are used to introduce NBu4+ as an organic cation in the case of cobalt and iron. The impact of the intramolecular cation complexation was further demonstrated upon reaction with diphenyl acetylene which leads to bond formation processes and redox disproportionation instead of η2-alkyne complex formation.
RESUMO
Carbon-rich ruthenium allenylidene complexes bearing either a hexaarylbenzene (HAB) or a hexa-peri-hexabenzocoronene (HBC) substituent were synthesised. This was achieved via the corresponding propargyl alcohols with HAB and HBC substituents, which were accessible via 3 or 4 step reaction cascades. Reaction of the propargyl alcohols HC[triple bond, length as m-dash]C(OH)Ph(HAB) and HC[triple bond, length as m-dash]C(OH)Ph(HBC) with [RuCl(η5-C5H5)(PPh3)2] yielded the complexes [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]C(HAB)(Ph))(PPh3)2]PF6 and [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]C(HBC)(Ph))(PPh3)2]PF6. The latter of which shows interesting π-π-stacking behaviour in the solid state as well as aggregation in solution.