Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Anal Bioanal Chem ; 416(12): 2941-2949, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594392

RESUMO

Messenger RNA (mRNA) vaccines represent a landmark in vaccinology, especially with their success in COVID-19 vaccines, which have shown great promise for future vaccine development and disease prevention. As a platform technology, synthetic mRNA can be produced with high fidelity using in vitro transcription (IVT). Magnesium plays a vital role in the IVT process, facilitating the phosphodiester bond formation between adjacent nucleotides and ensuring accurate transcription to produce high-quality mRNA. The development of the IVT process has prompted key inquiries about in-process characterization of magnesium ion (Mg++) consumption, relating to the RNA polymerase (RNAP) activation, fed-batch mode production yield, and mRNA quality. Hence, it becomes crucial to monitor the free Mg++ concentration throughout the IVT process. However, no free Mg++ analysis method has been reported for complex IVT reactions. Here we report a robust capillary zone electrophoresis (CZE) method with indirect UV detection. The assay allows accurate quantitation of free Mg++ for the complex IVT reaction where it is essential to preserve IVT samples in their native-like state during analysis to avoid dissociation of bound Mg complexes. By applying this CZE method, the relationships between free Mg++ concentration, the mRNA yield, and dsRNA impurity level were investigated. Such mechanistic understanding facilitates informed decisions regarding the quantity and timing of feeding starting materials to increase the yield. Furthermore, this approach can serve as a platform method for analyzing the free Mg++ in complex sample matrices where preserving the native-like state of Mg++ binding is key for accurate quantitation.


Assuntos
Eletroforese Capilar , Magnésio , RNA Mensageiro , Transcrição Gênica , Eletroforese Capilar/métodos , Magnésio/análise , RNA Mensageiro/genética , RNA Mensageiro/análise , SARS-CoV-2/genética , Humanos
2.
JMIR Mhealth Uhealth ; 6(3): e74, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29592848

RESUMO

BACKGROUND: General consumers can now easily access drug information and quickly check for potential drug-drug interactions (PDDIs) through mobile health (mHealth) apps. With aging population in Canada, more people have chronic diseases and comorbidities leading to increasing numbers of medications. The use of mHealth apps for checking PDDIs can be helpful in ensuring patient safety and empowerment. OBJECTIVE: The aim of this study was to review the characteristics and quality of publicly available mHealth apps that check for PDDIs. METHODS: Apple App Store and Google Play were searched to identify apps with PDDI functionality. The apps' general and feature characteristics were extracted. The Mobile App Rating Scale (MARS) was used to assess the quality. RESULTS: A total of 23 apps were included for the review-12 from Apple App Store and 11 from Google Play. Only 5 of these were paid apps, with an average price of $7.19 CAD. The mean MARS score was 3.23 out of 5 (interquartile range 1.34). The mean MARS scores for the apps from Google Play and Apple App Store were not statistically different (P=.84). The information dimension was associated with the highest score (3.63), whereas the engagement dimension resulted in the lowest score (2.75). The total number of features per app, average rating, and price were significantly associated with the total MARS score. CONCLUSIONS: Some apps provided accurate and comprehensive information about potential adverse drug effects from PDDIs. Given the potentially severe consequences of incorrect drug information, there is a need for oversight to eliminate low quality and potentially harmful apps. Because managing PDDIs is complex in the absence of complete information, secondary features such as medication reminder, refill reminder, medication history tracking, and pill identification could help enhance the effectiveness of PDDI apps.

3.
mBio ; 6(2): e02533, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25714715

RESUMO

UNLABELLED: The opportunistic pathogen Pseudomonas aeruginosa can infect almost any site in the body but most often targets epithelial cell-lined tissues such as the airways, skin, and the cornea of the eye. A common predisposing factor is cystic fibrosis (CF), caused by defects in the cystic fibrosis transmembrane-conductance regulator (CFTR). Previously, we showed that when P. aeruginosa enters epithelial cells it replicates intracellularly and occupies plasma membrane blebs. This phenotype is dependent on the type 3 secretion system (T3SS) effector ExoS, shown by others to induce host cell apoptosis. Here, we examined mechanisms for P. aeruginosa-induced bleb formation, focusing on its relationship to apoptosis and the CFTR. The data showed that P. aeruginosa-induced blebbing in epithelial cells is independent of actin contraction and is inhibited by hyperosmotic media (400 to 600 mOsM), distinguishing bacterially induced blebs from apoptotic blebs. Cells with defective CFTR displayed enhanced bleb formation upon infection, as demonstrated using bronchial epithelial cells from a patient with cystic fibrosis and a CFTR inhibitor, CFTR(Inh)-172. The defect was found to be correctable either by incubation in hyperosmotic media or by complementation with CFTR (pGFP-CFTR), suggesting that the osmoregulatory function of CFTR counters P. aeruginosa-induced bleb-niche formation. Accordingly, and despite their reduced capacity for bacterial internalization, CFTR-deficient cells showed greater bacterial occupation of blebs and enhanced intracellular replication. Together, these data suggest that P. aeruginosa bleb niches are distinct from apoptotic blebs, are driven by osmotic forces countered by CFTR, and could provide a novel mechanism for bacterial persistence in the host. IMPORTANCE: Pseudomonas aeruginosa is an opportunistic pathogen problematic in hospitalized patients and those with cystic fibrosis (CF). Previously, we showed that P. aeruginosa can enter epithelial cells and replicate within them and traffics to the membrane blebs that it induces. This "bleb-niche" formation requires ExoS, previously shown to cause apoptosis. Here, we show that the driving force for bleb-niche formation is osmotic pressure, differentiating P. aeruginosa-induced blebs from apoptotic blebs. Either CFTR inhibition or CFTR mutation (as seen in people with CF) causes P. aeruginosa to make more bleb niches and provides an osmotic driving force for blebbing. CFTR inhibition also enhances bacterial occupation of blebs and intracellular replication. Since CFTR is targeted for removal from the plasma membrane when P. aeruginosa invades a healthy cell, these findings could relate to pathogenesis in both CF and healthy patient populations.


Assuntos
Extensões da Superfície Celular/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Pseudomonas aeruginosa/fisiologia , Actinas/metabolismo , Células Cultivadas , Meios de Cultura/química , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Teste de Complementação Genética , Humanos , Pressão Osmótica , Pseudomonas aeruginosa/crescimento & desenvolvimento
4.
J Virol ; 79(12): 7380-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15919893

RESUMO

Conventional influenza vaccines can prevent infection, but their efficacy depends on the degree of antigenic "match" between the strains used for vaccine preparation and those circulating in the population. A universal influenza vaccine based on invariant regions of the virus, able to provide broadly cross-reactive protection, without requiring continuous manufacturing update, would solve a major medical need. Since the temporal and geographical dominance of the influenza virus type and/or subtype (A/H3, A/H1, or B) cannot yet be predicted, a universal vaccine, like the vaccines currently in use, should include both type A and type B influenza virus components. However, while encouraging preclinical data are available for influenza A virus, no candidate universal vaccine is available for influenza B virus. We show here that a peptide conjugate vaccine, based on the highly conserved maturational cleavage site of the HA(0) precursor of the influenza B virus hemagglutinin, can elicit a protective immune response against lethal challenge with viruses belonging to either one of the representative, non-antigenically cross-reactive influenza B virus lineages. We demonstrate that protection by the HA(0) vaccine is mediated by antibodies, probably through effector mechanisms, and that a major part of the protective response targets the most conserved region of HA(0), the P1 residue of the scissile bond and the fusion peptide domain. In addition, we present preliminary evidence that the approach can be extended to influenza A virus, although the equivalent HA(0) conjugate is not as efficacious as for influenza B virus.


Assuntos
Desenho de Fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza B/imunologia , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Precursores de Proteínas , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza B/patogenicidade , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
5.
Asian Am Pac Isl J Health ; 7(2): 185-187, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-11567494
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA