Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 33(8): 1284-1298, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37714713

RESUMO

Chinese indicine cattle harbor a much higher genetic diversity compared with other domestic cattle, but their genome architecture remains uninvestigated. Using PacBio HiFi sequencing data from 10 Chinese indicine cattle across southern China, we assembled 20 high-quality partially phased genomes and integrated them into a multiassembly graph containing 148.5 Mb (5.6%) of novel sequence. We identified 156,009 high-confidence nonredundant structural variants (SVs) and 206 SV hotspots spanning ∼195 Mb of gene-rich sequence. We detected 34,249 archaic introgressed fragments in Chinese indicine cattle covering 1.93 Gb (73.3%) of the genome. We inferred an average of 3.8%, 3.2%, 1.4%, and 0.5% of introgressed sequence originating, respectively, from banteng-like, kouprey-like, gayal-like, and gaur-like Bos species, as well as 0.6% of unknown origin. Introgression from multiple donors might have contributed to the genetic diversity of Chinese indicine cattle. Altogether, this study highlights the contribution of interspecies introgression to the genomic architecture of an important livestock population and shows how exotic genomic elements can contribute to the genetic variation available for selection.


Assuntos
Bovinos , Ruminantes , Animais , Bovinos/genética , China , Genoma , Genômica , Ruminantes/genética
2.
PLoS Genet ; 19(2): e1010615, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821549

RESUMO

The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.


Assuntos
Aclimatação , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Haplótipos/genética , Irã (Geográfico) , Fenótipo
3.
Adv Sci (Weinh) ; : e2402818, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898769

RESUMO

Stretchable electrodes based on liquid metals (LM) are widely used in human-machine interfacing, wearable bioelectronics, and other emerging technologies. However, realizing the high-precision patterning and mechanical stability remains challenging due to the poor wettability of LM. Herein, a method is reported to fabricate LM-based multilayer solid-liquid electrodes (m-SLE) utilizing electrohydrodynamic (EHD) printed confinement template. In these electrodes, LM self-assembled onto these high-resolution templates, assisted by selective wetting on the electrodeposited Cu layer. This study shows that a m-SLE composed of PDMS/Ag/Cu/EGaIn exhibits line width of ≈20 µm, stretchability of ≈100%, mechanical stability ≈10 000 times (stretch/relaxation cycles), and recyclability. The multi-layer structure of m-SLE enables the adjustability of strain sensing, in which the strain-sensitive Ag part can be used for non-distributed detection in human health monitoring and the strain-insensitive EGaIn part can be used as interconnects. In addition, this study demonstrates that near field communication (NFC) devices and multilayer displays integrated by m-SLEs exhibit stable wireless signal transmission capability and stretchability, suggesting its applicability in creating highly-integrated, large-scale commercial, and recyclable wearable electronics.

4.
ACS Nano ; 17(14): 13256-13268, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37411016

RESUMO

Aqueous zinc-ion batteries (ZIBs) are promising candidates to power flexible integrated functional systems because they are safe and environmentally friendly. Among the numerous cathode materials proposed, Mn-based compounds, particularly MnO2, have attracted special attention because of their high energy density, nontoxicity, and low cost. However, the cathode materials reported so far are characterized by sluggish Zn2+ storage kinetics and moderate stabilities. Herein, a ZIB cathode based on reduced graphene oxide (rGO)-coated MnSe nanoparticles (MnSe@rGO) is proposed. After MnSe was activated to α-MnO2, the ZIB exhibits a specific capacity of up to 290 mAh g-1. The mechanism underlying the improvement in the electrochemical performance of the MnSe@rGO based electrode is investigated using a series of electrochemical tests and first-principles calculations. Additionally, in situ Raman spectroscopy is used to track the phase transition of the MnSe@rGO cathodes during the initial activation, proving the structural evolution from the LO to MO6 mode. Because of the high mechanical stability of MnSe@rGO, flexible miniaturized energy storage devices can be successfully printed using a high-precision electrohydrodynamic (EHD) jet printer and integrated with a touch-controlled light-emitting diode array system, demonstrating the application of flexible EHD jet-printed microbatteries.

5.
Zool Res ; 44(1): 20-29, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257823

RESUMO

Understanding how evolutionary pressures related to climate change have shaped the current genetic background of domestic animals is a fundamental pursuit of biology. Here, we generated whole-genome sequencing data from native goat populations in Iraq and Pakistan. Combined with previously published data on modern, ancient (Late Neolithic to Medieval periods), and wild Capra species worldwide, we explored the genetic population structure, ancestry components, and signatures of natural positive selection in native goat populations in Southwest Asia (SWA). Results revealed that the genetic structure of SWA goats was deeply influenced by gene flow from the eastern Mediterranean during the Chalcolithic period, which may reflect adaptation to gradual warming and aridity in the region. Furthermore, comparative genomic analysis revealed adaptive introgression of the KITLG locus from the Nubian ibex ( C. nubiana) into African and SWA goats. The frequency of the selected allele at this locus was significantly higher among goat populations located near northeastern Africa. These results provide new insights into the genetic composition and history of goat populations in the SWA region.


Assuntos
Clima Desértico , Cabras , Animais , Cabras/genética , Genômica , Alelos , Paquistão
6.
Nanomaterials (Basel) ; 9(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266135

RESUMO

Electrically conductive adhesives (ECAs) are one of the low temperature bonding materials. It can be used to replace toxic Sn-Pb solder. The key issue for the application of ECAs is how to improve their electrical properties. In the present study, we develop an effective method to promote the electrical properties of ECAs by addition of polyaniline (PANI) nanoparticles. PANIs were synthesized via a facile one-step chemical oxidative polymerization method. After adding 0.5 wt% PANI nanoparticles, the conductivity of ECAs increased dramatically by an order of magnitude. The bulk resistivity of 8.8 × 10-5 Ω·cm is achieved for 65 wt% silver fillers with 0.5 wt% PANIs loaded ECAs. Besides, this improvement has no negative effect on the shear strength and the aging life of ECAs. Moreover, the use of PANIs not only lowers the percolation threshold of ECAs, but also reduces the cost and improves the bonding reliability. Finally, PANIs enhanced ECAs patterns were successfully printed by a stencil printing method, which proved their potential applications in replacing conventional solder pastes and printing functional circuits.

7.
Talanta ; 188: 124-134, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029354

RESUMO

Pressure sensitive paints (PSP) containing oxygen probes were primarily used to measure air pressure. In this perspective, a polymerizable methacrylate-derived tetraphenylporphinato platinum(II) (PtTPP-MA) monomer was copolymerized with acrylic/vinyl monomers to produce four different copolymers. Octafluoropentyl methacrylate (OCFPM) and pentafluorophenyl acrylate (PFPA) were used as fluorinated monomers. Methyl methacrylate (MMA) and styrene (S) were used as non-fluorinated monomers. The structures and physical properties of the polymers were confirmed by 1H NMR, 19F NMR, GPC, and DSC. Experimental conditions were optimized to get fine nanofibers. Pressure sensing electrospun membranes and spin coated films were fabricated. Nanofibers showed fast response and good sensitivity towards gaseous oxygen. The influence of types of substrate and polymer natures on response time, oxygen sensitivity, and pressure responses were deliberated. Among our synthesized copolymers, poly(PS-co-PFPA-co-OCFPM-co-PtTPPMA) (Polymer P3) showed fast response time and good pressure sensitivity both as spin coated films and nanofibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA