RESUMO
TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.
Assuntos
Processamento Alternativo , Retículo Endoplasmático , Proteínas de Membrana , Cátions/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regulação da Expressão Gênica/genéticaRESUMO
Bacteria are ideal anticancer agents and carriers due to their unique capabilities that are convenient in genetic manipulation, tumor-specific targeting, and deep-tissue penetration. However, the specific molecular mechanisms of bacteria-mediated cancer therapy (BMCT) have not been clarified. In this study, we found that TLR4 signaling pathway is critical for Salmonella-mediated tumor targeting, tumor suppression, and liver and spleen protection. TLR4 knockout in mice decreased the levels of cytokines and chemokines, such as S100a8, S100a9, TNF-α, and IL-1ß, in tumor microenvironments (TMEs) after Salmonella treatment, which inhibited tumor cell death and nutrient release, led to reduced bacterial contents in tumors and attenuated antitumor efficacy in a negative feedback manner. Importantly, we found that S100a8 and S100a9 played a leading role in Salmonella-mediated cancer therapy (SMCT). The antitumor efficacy was abrogated and liver damage was prominent when blocked with a specific inhibitor. These findings elucidated the mechanism of Salmonella-mediated tumor targeting, suppression, and host antibacterial defense, providing insights into clinical cancer therapeutics.
Assuntos
Calgranulina A , Calgranulina B , Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Calgranulina B/metabolismo , Calgranulina B/genética , Calgranulina A/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Microambiente Tumoral , Humanos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Salmonella/metabolismo , Neoplasias/microbiologia , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapiaRESUMO
Reprogramming of cellular energy metabolism, including deregulated lipid metabolism, is a hallmark of head and neck squamous cell carcinoma (HNSCC). However, the underlying molecular mechanisms remain unclear. Long-chain acyl-CoA synthetase 4 (ACSL4), which catalyzes fatty acids to form fatty acyl-CoAs, is critical for synthesizing phospholipids or triglycerides. Despite the differing roles of ACSL4 in cancers, our data showed that ACSL4 was highly expressed in HNSCC tissues, positively correlating with poor survival rates in patients. Knockdown of ACSL4 in HNSCC cells led to reduced cell proliferation and invasiveness. RNA sequencing analyses identified interferon-induced protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L), encoded by two interferon-stimulated genes, as potential effectors of ACSL4. Silencing IFI44 or IFI44L expression in HNSCC cells decreased cell proliferation and invasiveness. Manipulating ACSL4 expression or activity modulated the expression levels of JAK1, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 1 (STAT1), interferon α (IFNα), IFNß, and interferon regulatory factor 1 (IRF1), which regulate IFI44 and IFI44L expression. Knockdown of IRF1 reduced the expression of JAK1, TYK2, IFNα, IFNß, IFI44, or IFI44L and diminished cell proliferation and invasiveness. Our results suggest that ACSL4 upregulates interferon signaling, enhancing IFI44 and IFI44L expression and promoting HNSCC cell proliferation and invasiveness. Thus, ACSL4 could serve as a novel therapeutic target for HNSCC.
Assuntos
Proliferação de Células , Coenzima A Ligases , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço , Regulação para Cima , Feminino , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Fator Regulador 1 de Interferon , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genéticaRESUMO
Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.
Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Fusarium/patogenicidade , Tricotecenos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genes Bacterianos/genéticaRESUMO
Zinc finger protein 384 (ZNF384) rearrangement defined a novel subtype of B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of ZNF384 fusion transcript levels represented measurable residual disease remains to be explored. ZNF384 fusions were screened out in 57 adult B-ALL patients at diagnosis by real-time quantitative polymerase chain reaction and their transcript levels were serially monitored during treatment. The reduction of ZNF384 fusion transcript levels at the time of achieving complete remission had no significant impact on survival, whereas its ≥2.5-log reduction were significantly associated with higher relapse free survival (RFS) and overall survival (OS) rates after course 1 consolidation (p = 0.022 and = 0.0083) and course 2 consolidation (p = 0.0025 and = 0.0008). Compared with chemotherapy alone, allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly improved RFS and OS of patients with <2.5-log reduction after course 1 consolidation (p < 0.0001 and = 0.0002) and course 2 consolidation (p = 0.0003 and = 0.019), whereas exerted no significant effects in patients with ≥2.5-log reduction (all p > 0.05). ZNF384 fusion transcript levels after course 1 and course 2 consolidation strongly predict relapse and survival and may guide whether receiving allo-HSCT in adult B-ALL.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Prognóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Fatores de Transcrição , Neoplasia Residual/diagnóstico , Recidiva , Transativadores/metabolismo , Transativadores/uso terapêuticoRESUMO
In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.
Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-kit , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/genética , Resposta Patológica Completa , Prognóstico , Recidiva , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteínas Proto-Oncogênicas c-kit/genéticaRESUMO
Developing efficient heterogeneous catalysts for chemical fixation of CO2 to produce high-value-added chemicals under mild conditions is highly desired but still challenging. Herein, we first reported an approach to prepare a novel catalyst (Ag@NCNFs), featuring Ag nanoparticles (NPs) embedded within porous nitrogen-doped carbon nanofibers (NCNFs), via growing a Ag metal-organic framework on one-dimensional electrospun nanofibers followed by pyrolysis. Benefiting from the abundant nitrogen species and porous structure, Ag NPs is well dispersed in the obtained Ag@NCNFs. Catalytic studies indicated that Ag@NCNFs exhibited excellent catalytic activity for the three-component coupling reaction of CO2, secondary amines, and propargylic alcohols to generate ß-oxopropylcarbamates under mild conditions with a turnover number (TON) of 16.2, and it can be recycled and reused at least 5 times without an obvious decline in catalytic activity. The reaction mechanism was clearly clarified by FTIR, NMR, 13C isotope labeling, control experiments, and density functional theory calculations. The results suggest that Ag@NCNFs and 1,8-diazabicyclo[5.4.0]undec-7-ene can synergistically activate propargylic alcohol to react with CO2, and then the generated α-alkylidene cyclic carbonate was invaded by secondary amine to produce ß-oxopropylcarbamate. Importantly, to the best of our knowledge, this is the first experimental and theoretical investigation on this reaction.
RESUMO
The need for photosensors and gas sensors arises from their pivotal roles in various technological applications, ensuring enhanced efficiency, safety, and functionality in diverse fields. In this paper, interlinked PbS/Sb2O5thin film has been synthesized by a magnetron sputtering method. We control the temperature to form the nanocomposite by using their different nucleation temperature during the sulfonation process. A nanostructured PbS/Sb2O5with cross-linked morphology was synthesized by using this fast and efficient method. This method has also been used to grow a uniform thin film of nanocomposite. The photo-sensing and gas-sensing properties related to the PbS/Sb2O5compared with those of other nanomaterials have also been investigated. The experimental and theoretical calculations reveal that the PbS/Sb2O5exhibits extraordinarily superior photo-sensing and gas-sensing properties in terms of providing a pathway for electron transport to the electrode. The attractive highly sensitive photo and gas sensing properties of PbS/Sb2O5make them applicable for many different kinds of applications. The responsivity and detectivity of PbS/Sb2O5are 0.28 S/mWcm-2and 1.68 × 1011Jones respectively. The sensor response towards NO2gas was found to be 0.98 at 10 ppb with an limit of detection (LOD) of 0.083 ppb. The PbS/Sb2O5exhibits high selectivity towards the NO2gas. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) were used to analyze the geometries, electronic structure, and electronic absorption spectra of a light sensor fabricated by PbS/Sb2O5. The results are very analogous to the experimental results. Both photosensors and gas sensors are indispensable tools that contribute significantly to the evolution of technology and the improvement of various aspects of modern life.
RESUMO
Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.
Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , RNA/metabolismo , Carcinoma Epitelial do Ovário/genética , RNA Circular/genética , RNA Circular/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proliferação de Células , Apoptose , MicroRNAs/metabolismo , Movimento CelularRESUMO
It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.
Assuntos
Regulação da Temperatura Corporal , Dinoprostona , Febre , Núcleos Parabraquiais , Área Pré-Óptica , Receptores de Prostaglandina E Subtipo EP3 , Animais , Masculino , Ratos , Regulação da Temperatura Corporal/efeitos dos fármacos , Dinoprostona/farmacologia , Febre/induzido quimicamente , Febre/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/fisiologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP3/metabolismoRESUMO
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Assuntos
Via de Sinalização Hippo , Interleucina-6 , Regeneração Hepática , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Receptor Tipo 2 de Angiotensina , Transdução de Sinais , Animais , Masculino , Camundongos , Acetaminofen , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteínas de Sinalização YAP/metabolismoRESUMO
OBJECTIVE: To investigate the significance of endoscopic grading (Hill's classification) of gastroesophageal flap valve (GEFV) in the examination of patients with gastroesophageal reflux disease (GERD). METHODS: One hundred and sixty-two patients undergoing gastroscopy in the Department of Gastroenterology, Xingyi People's Hospital between Apr. 2022 and Sept. 2022 were selected by convenient sampling, and data such as GEFV grade, and findings of esophageal high-resolution manometry (HRM) and esophageal 24-h pH/impedance reflux monitoring, and Los Angeles (LA) classification of reflux esophagitis (RE) were collected and compared. RESULTS: Statistically significant differences in age (F = 9.711, P < 0.001) and hiatal hernia (χ = 35.729, P < 0.001) were observed in patients with different GEFV grades. The resting LES pressures were 12.12 ± 2.79, 10.73 ± 2.68, 9.70 ± 2.29, and 8.20 ± 2.77 mmHg (F = 4.571, P < 0.001) and LES lengths were 3.30 ± 0.70, 3.16 ± 0.68, 2.35 ± 0.83, and 2.45 ± 0.62 (F = 3.789, P = 0.011), respectively, in patients with GEFV grades I-IV. DeMeester score (Z = 5.452, P < 0.001), AET4 (Z = 5.614, P < 0.001), acid reflux score (upright) (Z = 7.452, P < 0.001), weak acid reflux score (upright) (Z = 3.121, P = 0.038), liquid reflux score (upright) (Z = 3.321, P = 0.031), acid reflux score (supine) (Z = 6.462, P < 0.001), mixed reflux score (supine) (Z = 3.324, P = 0.031), gas reflux score (supine) (Z = 3.521, P = 0.024) were different in patients with different GEFV grades, with statistically significant differences. Pearson correlation analysis revealed a positive correlation between RE grade and LA classification of GERD (r = 0.662, P < 0.001), and the severity of RE increased gradually with the increase of the Hill grades of GEFV. CONCLUSION: The Hill grade of GEFV is related to age, hiatal hernia, LES pressure, and the consequent development and severity of acid reflux and RE. Evaluation of esophageal motility and reflux based on the Hill grade of GEFV is of significance for the diagnosis and treatment of GERD.
Assuntos
Refluxo Gastroesofágico , Manometria , Humanos , Refluxo Gastroesofágico/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Manometria/métodos , Adulto , Idoso , Gastroscopia/métodos , Junção Esofagogástrica/fisiopatologia , Junção Esofagogástrica/patologia , Junção Esofagogástrica/cirurgia , Monitoramento do pH Esofágico , Hérnia Hiatal/cirurgia , Hérnia Hiatal/complicações , Esfíncter Esofágico Inferior/fisiopatologiaRESUMO
BACKGROUND: Bone metastasis (BM) carries a poor prognosis for patients with upper-tract urothelial carcinoma (UTUC). This study aims to identify survival predictors and develop a prognostic nomogram for overall survival (OS) in UTUC patients with BM. METHODS: The Surveillance, Epidemiology, and End Results database was used to select patients with UTUC between 2010 and 2019. The chi-square test was used to assess the baseline differences between the groups. Kaplan-Meier analysis was employed to assess OS. Univariate and multivariate analyses were conducted to identify prognostic factors for nomogram establishment. An independent cohort was used for external validation of the nomogram. The discrimination and calibration of the nomogram were evaluated using concordance index (C-index), area under receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). All statistical analyses were performed using SPSS 23.0 and R software 4.2.2. RESULTS: The mean OS for UTUC patients with BM was 10 months (95% CI: 8.17 to 11.84), with 6-month OS, 1-year OS, and 3-year OS rates of 41%, 21%, and 3%, respectively. Multi-organ metastases (HR = 2.21, 95% CI: 1.66 to 2.95, P < 0.001), surgery (HR = 0.72, 95% CI: 0.56 to 0.91, P = 0.007), and chemotherapy (HR = 0.37, 95% CI: 0.3 to 0.46, P < 0.001) were identified as independent prognostic factors. The C-index was 0.725 for the training cohort and 0.854 for the validation cohort, and all AUC values were > 0.679. The calibration curve and DCA curve showed the accuracy and practicality of the nomogram. CONCLUSIONS: The OS of UTUC patients with BM was poor. Multi-organ metastases was a risk factor for OS, while surgery and chemotherapy were protective factors. Our nomogram was developed and validated to assist clinicians in evaluating the OS of UTUC patients with BM.
Assuntos
Neoplasias Ósseas , Carcinoma de Células de Transição , Nomogramas , Neoplasias Ureterais , Humanos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/mortalidade , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Carcinoma de Células de Transição/secundário , Carcinoma de Células de Transição/mortalidade , Neoplasias Ureterais/mortalidade , Neoplasias Ureterais/patologia , Neoplasias Ureterais/secundário , Taxa de Sobrevida , Neoplasias Renais/patologia , Neoplasias Renais/mortalidade , Prognóstico , Estudos Retrospectivos , Programa de SEER , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: The coronavirus disease (COVID-19) pandemic has accentuated the need for effective clinical skills training in infectious diseases. This study aimed to explore the influencing factors of infectious disease clinical skills training based on scenario simulation teaching for medical staff in China. METHODS: This hospital-based, cross-sectional study was conducted at the Third People's Hospital of Shenzhen between March and December 2022. Scenario simulation teaching was applied, and factors such as gender, educational level, professional background, and previous experience were examined to determine their impact on qualification outcomes. RESULTS: The study included participants primarily between the ages of 20-40 years, with a higher proportion of women holding university degrees. Nurses and physicians were more likely to qualify, indicating the significance of professional backgrounds. Women showed a higher likelihood of qualifying than men and higher educational attainment correlated with better qualification rates. Prior experience with protective clothing in isolation wards was a significant determinant of successful qualification. Multivariate analysis underscored the influence of sex, education, and previous experience on training effectiveness. CONCLUSION: Scenario simulation is an effective strategy for training clinical skills in treating infectious diseases. This study highlights the importance of considering sex, education, professional background, and prior experience when designing training programs to enhance the efficacy and relevance of infectious disease training.
Assuntos
COVID-19 , Competência Clínica , Treinamento por Simulação , Humanos , COVID-19/epidemiologia , Estudos Transversais , China , Feminino , Masculino , Adulto , SARS-CoV-2 , Adulto Jovem , Corpo Clínico Hospitalar/educação , PandemiasRESUMO
BACKGROUND: Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS: Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION: The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.
Assuntos
Encéfalo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Fígado , Fosfatidilcolinas , Fosfatidilserinas , Desmame , Animais , Fosfatidilserinas/metabolismo , Fígado/metabolismo , Fígado/química , Fosfatidilcolinas/metabolismo , Camundongos , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Masculino , Feminino , HumanosRESUMO
OBJECTIVE: To study the expression of the Homeobox C6 (HOXC6) gene in the homeobox family in PCa, its effect on the biological behavior of PCa cells and its action mechanism. METHODS: Based on the studies of HOXC6 retrieved from the database of Gene Expression Profiling Interactive Analysis (GEPIA), we analyzed the expression of HOXC6 in PCa and the relationship of its expression level with the survival prognosis of the patients. We detected the expression of the HOXC6 protein in PCa tissues and cells by Western blot, stably interfered with the expression of the HOXC6 gene in human PCa DU145 and PC-3 cells and normal prostatic epithelial RWPE-1 cells using the siRNA plasmid, and determined the effects of HOXC6 on the proliferation, migration and invasiveness of PCa cells by CCK8, plate cloning and scratch healing and Transwell invasion assays. Using the GEPIA database, we analyzed the correlation of the Wnt tumor inhibitory factor-secreted frizzled-related protein 1 (SFRP1) gene with HOXC6, and detected the expressions of HOXC6, SFRP1, Wnt and ß-catenin in PC-3 cells after siRNA-HOXC6 transfection by Western blot. RESULTS: The expression of HOXC6 was dramatically higher in the PCa than in the normal prostate tissue (P< 0.01), and in the PCa cells than in the normal prostatic epithelial cells (P< 0.01). Bioinformatics analysis indicated a lower survival rate of the PCa patients with a high than those with a low HOXC6 expression (P = 0.011). The relative expression of the HOXC6 protein, absorbance value, number of clones formed and number of invaded cells were significantly lower in the siRNA group than in the negative controls (P< 0.05). According to the GEPIA database, highly expressed SFRP1 was associated with a good prognosis of PCa, and the protein expressions of Wnt and ß-catenin were markedly increased while that of SFRP1 decreased in the PCa PC-3 cell line (P< 0.05). The expressions of the Wnt and ß-catenin proteins were decreased and that of SFRP1 increased significantly in the siRNA-HOXC6 transfection group compared with those in the siRNA negative control and PCa PC-3 groups (P< 0.05). CONCLUSION: HOXC6 is highly expressed in PCa tissues and related to the proliferation, migration and invasiveness of PCa cells. HOXC6 promotes the growth of DU145 and PC-3 cells in PCa by inhibiting the SFRP1/Wnt/ß-catenin signaling pathway, and may be a potential target for clinical treatment of PCa.
Assuntos
Proliferação de Células , Proteínas de Homeodomínio , Neoplasias da Próstata , Via de Sinalização Wnt , beta Catenina , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Progressão da Doença , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , RNA Interferente Pequeno/genética , PrognósticoRESUMO
Hydrogen (H2) is a clean and environmentally friendly energy carrier. The depletion of fossil fuels makes renewable H2 production highly desirable. Water reforming of renewable biomass to hydrogen, with a relay of natural photosynthesis to biomass, would be an indirect pathway to realize the ideal but extremely challenging photocatalytic overall water splitting to hydrogen, with favorable thermodynamics. Since the seminal work of water reforming of biomass in 1980, great endeavors have been made. Nevertheless, hitherto, the entire kinetic pathway has been elusive, which seriously limits the reforming processes. Using a designed well-organized redox-neutral cleavage of C-C, O-H and C-H bonds enabled by photoelectrocatalysis, here, we show the efficient water reforming of biomass to hydrogen at room temperature, with a yield up to 93%. The clear insights into the kinetic pathway with oxidation of carbon radicals to carbon cations as the indicated rate-determining step, would cast brightness for efficient and sustainable hydrogen production to accelerate the hydrogen economy.
RESUMO
BACKGROUND & AIMS: The shift to redefine nonalcoholic fatty liver disease (NAFLD) as metabolic associated fatty liver disease (MAFLD) can profoundly affect patient care, health care professionals, and progress within the field. To date, there remains no consensus on the characterization of NAFLD vs MAFLD. Thus, this study sought to compare the differences between the natural history of NAFLD and MAFLD. METHODS: Medline and Embase databases were searched to include articles on prevalence, risk factors, or outcomes of patients with MAFLD or NAFLD. Meta-analysis of proportions was conducted using the generalized linear mix model. Risk factors and outcomes were evaluated in conventional pairwise meta-analysis. RESULTS: Twenty-two articles involving 379,801 patients were included. Pooled prevalence of MAFLD was 39.22% (95% confidence interval [CI], 30.96%-48.15%) with the highest prevalence in Europe and Asia, followed by North America. The current MAFLD Definition only accounted for 81.59% (95% CI, 66.51%-90.82%) of NAFLD diagnoses. Patients had increased odds of being diagnosed with MAFLD compared with NAFLD (odds ratio, 1.37; 95% CI, 1.16-1.63; P < .001). Imaging modality resulted in a significantly higher odds of being diagnosed with MAFLD compared with NAFLD, but not biopsy. MAFLD was significantly associated with males, higher body mass index, hypertension, diabetes, lipids, transaminitis, and greater fibrosis scores compared with NAFLD. CONCLUSIONS: There were stark differences in the prevalence and risk factors between MAFLD and NAFLD. However, in the use of the MAFLD Definition, a greater emphasis on the management of concomitant metabolic diseases and a collaborative effort is required to explore the complex pathophysiologic mechanisms underlying the disease.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Prevalência , Fatores de Risco , Ásia , BiópsiaRESUMO
This study was designed to assess the role and mechanism of circRNA SCAR in human retinal microvascular endothelial cells (hRMVECs) treated with high glucose. Quantitative real-time polymerase chain reaction (qRT-PCR) and cell counting kit 8 (CCK-8) were used to detect the effects of different concentrations of glucose on circRNA SCAR expression and cell proliferation in hRMVECs. Cell viability, levels of oxygen species (ROS), malondialdehyde (MDA) and adenosine triphosphate (ATP), as well as activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the transfected hRMVECs in each group were detected using CCK-8 and their corresponding detection kits. Changes in mtDNA copy number in high-glucose-induced hRMVECs were observed by qRT-PCR. Additionally, western blot was applied to detect effect of overexpressing circRNA SCAR on the expression levels of mitochondrial function-related proteins (Drp1 and Fis1) and cell permeability-related proteins (claudin-5, occludin and ZO-1) in hRMVECs under high-glucose concentration. According to experimental results, high glucose significantly downregulated circRNA SCAR expression and inhibited cell proliferation in hRMVECs. Instead, overexpression of this circRNA SCAR promoted cell proliferation, reduced levels of ROS, MDA and ATP, and increased SOD and CAT activities in hRMVECs under high-glucose concentration. Also, circRNA SCAR overexpression reversed the high-glucose-induced decrease in mtDNA copy number as well as, high-glucose-induced upregulation of Drp1 and Fis1 protein expression and downregulation of claudin-5, occludin and ZO-1 protein expression in hRMVECs. In summary, circRNA SCAR promotes the proliferation of hRMVECs under high-glucose concentration, alleviates oxidative stress induced by high glucose, and improves mitochondrial function and permeability damage.
Assuntos
Células Endoteliais , RNA Circular , Humanos , Trifosfato de Adenosina/metabolismo , Apoptose , Claudina-5/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Ocludina/metabolismo , Estresse Oxidativo , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Superóxido DismutaseRESUMO
PURPOSE: Brain invasion in meningiomas is considered an indicator of more aggressive behavior and worse prognosis. But the precise definition and the prognostic role of brain invasion remains unsolved duo to lacking a standardized workflow of surgical sampling and the histopathological detection. Searching for molecular biomarker expression correlating with brain invasion, could contribute to establish a molecular pathological diagnosis without problems of subjective interobserver variation and deeply understand the mechanism of brain invasion and develop innovative therapeutic strategies. METHODS: We utilized liquid chromatography tandem mass spectrometry to quantify protein abundances between non-invasive meningiomas (n = 21) and brain-invasive meningiomas (n = 21) spanning World Health Organization grades I and III. After proteomic discrepancies were analyzed, the 14 most up-regulated or down-regulated proteins were recorded. Immunohistochemical staining for glial fibrillary acidic protein and most likely brain invasion-related proteins was performed in both groups. RESULTS: A total of 6498 unique proteins were identified in non-invasive and brain-invasive meningiomas. Canstatin expression in the non-invasive group was 2.1-fold that of the brain-invasive group. The immunohistochemical staining showed canstatin expressed in both groups, and the non-invasive group showed stronger staining for canstatin in the tumor mass (p = 0.0132) than the brain-invasive group, which showed moderate intensity. CONCLUSION: This study demonstrated the low expression of canstatin in meningiomas with brain invasion, a finding that provide a basis for understanding the mechanism of brain invasion of meningiomas and may contribute to establish molecular pathological diagnosis and identify novel therapeutic targets for personalized care.