Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(44): 11232-11237, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30327344

RESUMO

Understanding how antibiotic-producing bacteria deal with highly reactive chemicals will ultimately guide therapeutic strategies to combat the increasing clinical resistance crisis. Here, we uncovered a distinctive self-defense strategy featured by a secreted oxidoreductase NapU to perform extracellularly oxidative activation and conditionally overoxidative inactivation of a matured prodrug in naphthyridinomycin (NDM) biosynthesis from Streptomyces lusitanus NRRL 8034. It was suggested that formation of NDM first involves a nonribosomal peptide synthetase assembly line to generate a prodrug. After exclusion and prodrug maturation, we identified a pharmacophore-inactivated intermediate, which required reactivation by NapU via oxidative C-H bond functionalization extracellularly to afford NDM. Beyond that, NapU could further oxidatively inactivate the NDM pharmacophore to avoid self-cytotoxicity if they coexist longer than necessary. This discovery represents an amalgamation of sophisticatedly temporal and spatial shielding mode conferring self-resistance in antibiotic biosynthesis from Gram-positive bacteria.


Assuntos
Antibacterianos/metabolismo , Pró-Fármacos/metabolismo , Streptomyces/metabolismo , Naftiridinas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Peptídeo Sintases/metabolismo
2.
Org Lett ; 24(1): 127-131, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34882414

RESUMO

This study confirmed the participation of a cryptic palmitoyl fatty acyl chain in the biosynthesis of safracin and unraveled a previously ignored peptidase for the removal of the precursor. Furthermore, the post-assembly line tailoring steps are extensively studied in terms of the methyltransferase SacI-catalyzed N-methylation and the FAD-dependent monooxygenase SacJ-catalyzed A-ring oxidation. The timing of these post-NRPS steps is also addressed in this work.


Assuntos
Peptídeo Sintases
3.
Nat Commun ; 12(1): 7085, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873166

RESUMO

Antibiotic resistance is becoming one of the major crises, among which hydrolysis reaction is widely employed by bacteria to destroy the reactive pharmacophore. Correspondingly, antibiotic producer has canonically co-evolved this approach with the biosynthetic capability for self-resistance. Here we discover a self-defense strategy featuring with reductive inactivation of hemiaminal pharmacophore by short-chain dehydrogenases/reductases (SDRs) NapW and homW, which are integrated with the naphthyridinomycin biosynthetic pathway. We determine the crystal structure of NapW·NADPH complex and propose a catalytic mechanism by molecular dynamics simulation analysis. Additionally, a similar detoxification strategy is identified in the biosynthesis of saframycin A, another member of tetrahydroisoquinoline (THIQ) antibiotics. Remarkably, similar SDRs are widely spread in bacteria and able to inactive other THIQ members including the clinical anticancer drug, ET-743. These findings not only fill in the missing intracellular events of temporal-spatial shielding mode for cryptic self-resistance during THIQs biosynthesis, but also exhibit a sophisticated damage-control in secondary metabolism and general immunity toward this family of antibiotics.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Simulação de Dinâmica Molecular , Tetra-Hidroisoquinolinas/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Bactérias/genética , Proteínas de Bactérias/genética , Biocatálise , Cromatografia Líquida de Alta Pressão , Resistência Microbiana a Medicamentos/genética , Humanos , Isoquinolinas/química , Isoquinolinas/metabolismo , Espectrometria de Massas/métodos , Estrutura Molecular , NADP/química , NADP/metabolismo , Naftiridinas/química , Naftiridinas/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Tetra-Hidroisoquinolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA