Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neurotrauma Rep ; 2(1): 411-423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738094

RESUMO

Spinal cord contusion injury leads to Wallerian degeneration of axonal tracts, resulting in irreversible paralysis. Contusion injury causes perfusion loss by thrombosis and vasospasm, resulting in spinal cord ischemia. In several tissues, including heart and brain, ischemia activates polyol pathway enzymes-aldose reductase (AR) and sorbitol dehydrogenase (SDH)-that convert glucose to sorbitol and fructose in reactions, causing oxidative stress and tissue loss. We sought to determine whether activation of this pathway, which has been termed glucotoxicity, contributes to tissue loss after spinal cord contusion injury. We tested individual treatments with AR inhibitors (sorbinil or ARI-809), SDH inhibitor (CP-470711), superoxide dismutase mimetic (tempol), or combined sorbinil and tempol. Each treatment significantly increased locomotor recovery and reduced loss of spinal cord tissue in a standard model of spinal cord contusion in rats. Tissue levels of sorbitol and axonal AR (AKR1B10) expression were increased after contusion injury, consistent with activation of the polyol pathway. Sorbinil treatment inhibited the above changes and also decreased axonal swelling and loss, characteristic of Wallerian degeneration. Treatment with tempol induced recovery of locomotor function that was similar in magnitude, but non-additive to sorbinil, suggesting a shared mechanism of action by reactive oxygen species (ROS). Exogenous induction of hyperglycemia further increased injury-induced axonal swelling, consistent with glucotoxicity. Unexpectedly, contusion increased spinal cord levels of glucose, the primary polyol pathway substrate. These results support roles for spinal glucose elevation and tissue glucotoxicity by the polyol pathway after spinal cord contusion injury that results in ROS-mediated axonal degeneration.

2.
J Neurosurg Spine ; : 1-8, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899880

RESUMO

OBJECTIVE: X-irradiation has been shown to be beneficial to recovery from spinal cord injury (SCI); however, the optimal therapeutic target has not been defined. Experiments were designed to determine the optimal target volume within the injured spinal cord for improving functional recovery and sparing tissue with stereotactic x-irradiation. METHODS: SCI was produced in rats at the T10 level. A 20-Gy dose of radiation was delivered with a single, 4-mm-diameter, circular radiation beam centered either on the injury epicenter or 4 or 8 mm caudal or rostral to the injury epicenter. Locomotor function was determined for 6 weeks with the Basso, Beattie, and Bresnahan locomotor scale and tissue sparing by histological analysis of transverse sections along the spinal cords. RESULTS: X-irradiation of spinal cord segments at 4 mm, but not 8 mm, caudal or rostral to the contusion epicenter resulted in increases in locomotor recovery. Consistently, significant tissue sparing also occurred with x-irradiation centered at those sites, although irradiation centered 4 mm rostral to the epicenter led to tissue sparing along the greatest length of the spinal cord. Interestingly, regression analysis of these variables demonstrated that the quantitative relationship between the amount of tissue spared and the improvement in locomotion recovery was greatest in a region several millimeters rostral to the injury epicenter. CONCLUSIONS: These results indicate that x-irradiation in a region rostral to the injury epicenter is optimal for recovery from SCI. This minimal target should be attractive for therapeutic application since it allows a greatly reduced target volume so that uninjured tissue is not needlessly irradiated.

3.
Pflugers Arch ; 458(3): 525-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19214561

RESUMO

Causes of disuse atrophy include loss of upper motor neurons, which occurs in spinal cord injury (SCI) or lower motor neurons (denervation). Whereas denervation quickly results in muscle fibrillations, SCI causes delayed onset of muscle spasticity. To compare the influence of denervation or SCI on muscle atrophy and atrophy-related gene expression, male rats had transection of either the spinal cord or sciatic nerve and were sacrificed 3, 7, or 14 days later. Rates of atrophy increased gradually over the first week after denervation and then were constant. In contrast, atrophy after SCI peaked at 1 week, then declined sharply. The greater atrophy after SCI compared to denervation was preceded by high levels of ubiquitin ligase genes, MAFbx and MuRF1, which then also markedly declined. After denervation, however, expression of these genes remained elevated at lower levels throughout the 2-week time course. Interestingly, expression of the muscle growth factor, IGF-1 was increased at 3 days after denervation when fibrillation also peaks compared to SCI. Expression of IGF-1R, GADD45, myogenin, and Runx1 were also initially increased after denervation or SCI, with later declines in expression levels which correlated less well with rates of atrophy. Thus, there were significant time-dependent differences in muscle atrophy and MAFbx, MuRF1, and IGF-1 expression following SCI or denervation which may result from distinct temporal patterns of spontaneous muscle contractile activity due to injury to upper versus lower motor neurons.


Assuntos
Regulação da Expressão Gênica , Neurônios Motores/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Vértebras Torácicas/lesões
4.
Neurosci Lett ; 415(3): 210-4, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17287083

RESUMO

Orthostatic hypotension commonly occurs in persons with spinal cord injury (SCI), limiting rehabilitation and independence. Findings of increased production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) after exposure to simulated microgravity suggest that increased iNOS expression contributes to OH in persons with SCI. To test this possibility, male Wistar rats underwent surgical transection of the spinal cord (T10) or sham-SCI surgery followed by euthanasia 3, 7 or 14 days later. Expression in thoracic aortic of inducible (iNOS), endothelial (eNOS) and neuronal (nNOS) NOS was then determined. In SCI rats, expression of iNOS mRNA was decreased at 3 days, had returned to normal levels of expression at 7 days and was increased at 14 days post-SCI (1.8-fold). In contrast, levels of eNOS mRNA were increased at 3 days (1.4-fold), then declined over time reaching levels by day 14 that were reduced compared to sham-SCI (0.23-fold). There were no significant effects of SCI on nNOS expression. These findings suggest a possible role for increased iNOS expression in the pathogenesis of OH in persons with SCI.


Assuntos
Aorta/fisiopatologia , Óxido Nítrico Sintase Tipo II/biossíntese , Síndrome de Shy-Drager/enzimologia , Síndrome de Shy-Drager/etiologia , Traumatismos da Medula Espinal/complicações , Animais , Aorta/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , RNA Mensageiro/metabolismo , Ratos , Síndrome de Shy-Drager/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Regulação para Cima/fisiologia , Vasodilatação/fisiologia
5.
J Bone Miner Res ; 32(12): 2489-2499, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28782882

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder that is characterized by episodic yet cumulative heterotopic ossification (HO) in skeletal muscles, tendons, and ligaments over a patient's lifetime. FOP is caused by missense mutations in the type I bone morphogenetic protein (BMP) receptor ACVR1. We have determined that the formation of heterotopic bone in FOP requires activation of mutant ACVR1 by Activin A, in part by showing that prophylactic inhibition of Activin A blocks HO in a mouse model of FOP. Here we piece together a natural history of developing HO lesions in mouse FOP, and determine where in the continuum of HO Activin A is required, using imaging (T2-MRI, µCT, 18 F-NaF PET/CT, histology) coupled with pharmacologic inhibition of Activin A at different times during the progression of HO. First, we show that expansion of HO lesions comes about through growth and fusion of independent HO events. These events tend to arise within a neighborhood of existing lesions, indicating that already formed HO likely triggers the formation of new events. The process of heterotopic bone expansion appears to be dependent on Activin A because inhibition of this ligand suppresses the growth of nascent HO lesions and stops the emergence of new HO events. Therefore, our results reveal that Activin A is required at least up to the point when nascent HO lesions mineralize and further demonstrate the therapeutic utility of Activin A inhibition in FOP. These results provide evidence for a model where HO is triggered by inflammation but becomes "self-propagating" by a process that requires Activin A. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Assuntos
Ativinas/metabolismo , Miosite Ossificante/patologia , Ossificação Heterotópica/patologia , Animais , Imageamento por Ressonância Magnética , Camundongos , Miosite Ossificante/diagnóstico por imagem , Ossificação Heterotópica/diagnóstico por imagem , Microtomografia por Raio-X
6.
PLoS One ; 11(2): e0150085, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910759

RESUMO

Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1-2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 µm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.


Assuntos
Angiografia/métodos , Meios de Contraste/farmacologia , Neoplasias Experimentais , Neovascularização Patológica/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem , Especificidade de Órgãos
7.
Sci Transl Med ; 7(303): 303ra137, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26333933

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by episodically exuberant heterotopic ossification (HO), whereby skeletal muscle is abnormally converted into misplaced, but histologically normal bone. This HO leads to progressive immobility with catastrophic consequences, including death by asphyxiation. FOP results from mutations in the intracellular domain of the type I BMP (bone morphogenetic protein) receptor ACVR1; the most common mutation alters arginine 206 to histidine (ACVR1(R206H)) and has been thought to drive inappropriate bone formation as a result of receptor hyperactivity. We unexpectedly found that this mutation rendered ACVR1 responsive to the activin family of ligands, which generally antagonize BMP signaling through ACVR1 but cannot normally induce bone formation. To test the implications of this finding in vivo, we engineered mice to carry the Acvr1(R206H) mutation. Because mice that constitutively express Acvr1[R206H] die perinatally, we generated a genetically humanized conditional-on knock-in model for this mutation. When Acvr1[R206H] expression was induced, mice developed HO resembling that of FOP; HO could also be triggered by activin A administration in this mouse model of FOP but not in wild-type controls. Finally, HO was blocked by broad-acting BMP blockers, as well as by a fully human antibody specific to activin A. Our results suggest that ACVR1(R206H) causes FOP by gaining responsiveness to the normally antagonistic ligand activin A, demonstrating that this ligand is necessary and sufficient for driving HO in a genetically accurate model of FOP; hence, our human antibody to activin A represents a potential therapeutic approach for FOP.


Assuntos
Receptores de Ativinas Tipo I/genética , Ativinas/metabolismo , Mutação , Miosite Ossificante/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Ligação Proteica , Proteína 1A de Ligação a Tacrolimo/metabolismo
8.
Neuroreport ; 20(9): 864-8, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19424096

RESUMO

At present, only the corticosteroid, methylprednisolone, is used for acute spinal cord injury to improve function. However, improvements are modest, and are associated with myopathy and immunosuppression so that alternative treatments are needed. Oxandrolone is an androgenic steroid with potential neuroprotective properties that is used to prevent muscle loss and is not immunosuppressive. Oxandrolone increased locomotor recovery concomitant with reduced loss of cord tissue in a standard weight drop model of spinal cord contusion injury indicating oxandrolone as a possible alternative to methylprednisolone. Oxandrolone also increased axonal sprouting within the ventral horns distal to the injury consistent with formation of relay circuits mediating locomotor recovery.


Assuntos
Oxandrolona/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Anabolizantes/farmacologia , Animais , Modelos Animais de Doenças , Cones de Crescimento/efeitos dos fármacos , Masculino , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/patologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Oxandrolona/uso terapêutico , Paraparesia/tratamento farmacológico , Paraparesia/etiologia , Paraparesia/fisiopatologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
9.
Neurosurgery ; 63(5): 981-7; discussion 987-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19005390

RESUMO

OBJECTIVE: Currently, because of the precision of stereotactic radiosurgery, radiation can now be delivered by techniques that shape the radiation beam to the tissue target for a variety of clinical applications. This avoids unnecessary and potentially damaging irradiation of surrounding tissues inherent in conventional irradiation, so that irradiation of the minimum volume of tissue necessary for optimal therapeutic benefit can be achieved. Although conventional x-irradiation has been shown to improve recovery from spinal cord injury in animals, the efficacy of targeted irradiation of the injured spinal cord has not been demonstrated previously. The purpose of these studies was to determine whether stereotactic x-irradiation of the injured spinal cord can enhance locomotor function and spare spinal cord tissue after contusion injury in a standard experimental model of spinal cord injury. METHODS: Contusion injury was produced in rats at the level of T10 with a weight-drop device, and doses of x-irradiation were delivered 2 hours after injury via a Novalis, 6-MeV linear accelerator shaped beam radiosurgery system (BrainLAB USA, Westchester, IL) in 4 sequential fractions, with beam angles 60 to 70 degrees apart, at a rate of 6.4 Gy/minute. The target volume was a 4 x 15-mm cylinder along the axis of the spinal cord, with the isocenter positioned at the contusion epicenter. Locomotor function was determined for 6 weeks after injury with the 21-point Basso, Beattie, and Bresnahan (BBB) locomotor scale and tissue sparing in histological sections of the spinal cord. RESULTS: Locomotor function recovered progressively during the 6-week postinjury observation period. BBB scores were significantly greater in the 10-Gy x-irradiated group compared with controls (9.4 versus 7.3; P < 0.05), indicating hind limb weight support or dorsal stepping in contrast to hind limb joint mobility without weight bearing. Doses in the range of 2 to 10 Gy increased BBB scores progressively, whereas greater doses of 15 to 25 Gy were associated with lower BBB scores. The extent of locomotor recovery after treatment with x-irradiation correlated with measurements of spared spinal cord tissue at the contusion epicenter. CONCLUSION: These results suggest a beneficial role for stereotactic radiosurgery in a rat model of acute spinal cord contusion injury and raise hopes for human treatment strategies. Additional animal studies are needed to further define potential benefits.


Assuntos
Radiocirurgia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/cirurgia , Medula Espinal/efeitos da radiação , Animais , Peso Corporal , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Atividade Motora , Músculo Esquelético/patologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos da radiação , Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA