Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Microbiol ; 120(3): 324-340, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37469248

RESUMO

OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.


Assuntos
Extremófilos , RNA , Extremófilos/metabolismo , Bactérias/genética , Bactérias/metabolismo , RNA não Traduzido/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
2.
Nucleic Acids Res ; 49(4): 2192-2212, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33450025

RESUMO

In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5' untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5'-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3'-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.


Assuntos
Metionina/biossíntese , Óperon , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Riboswitch , Staphylococcus aureus/genética , Regiões 5' não Traduzidas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Conformação de Ácido Nucleico , Clivagem do RNA , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
3.
PLoS Pathog ; 15(3): e1007618, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870530

RESUMO

RsaE is a conserved small regulatory RNA (sRNA) which was previously reported to represent a riboregulator of central carbon flow and other metabolic pathways in Staphylococcus aureus and Bacillus subtilis. Here we show that RsaE contributes to extracellular (e)DNA release and biofilm-matrix switching towards polysaccharide intercellular adhesin (PIA) production in a hypervariable Staphylococcus epidermidis isolate. Transcriptome analysis through differential RNA sequencing (dRNA-seq) in combination with confocal laser scanning microscopy (CLSM) and reporter gene fusions demonstrate that S. epidermidis protein- and PIA-biofilm matrix producers differ with respect to RsaE and metabolic gene expression. RsaE is spatiotemporally expressed within S. epidermidis PIA-mediated biofilms, and its overexpression triggers a PIA biofilm phenotype as well as eDNA release in an S. epidermidis protein biofilm matrix-producing strain background. dRNA-seq and Northern blot analyses revealed RsaE to exist as a major full-length 100-nt transcript and a minor processed species lacking approximately 20 nucleotides at the 5'-end. RsaE processing results in expansion of the mRNA target spectrum. Thus, full-length RsaE interacts with S. epidermidis antiholin-encoding lrgA mRNA, facilitating bacterial lysis and eDNA release. Processed RsaE, however, interacts with the 5'-UTR of icaR and sucCD mRNAs, encoding the icaADBC biofilm operon repressor IcaR and succinyl-CoA synthetase of the tricarboxylic acid (TCA) cycle, respectively. RsaE augments PIA-mediated biofilm matrix production, most likely through activation of icaADBC operon expression via repression of icaR as well as by TCA cycle inhibition and re-programming of staphylococcal central carbon metabolism towards PIA precursor synthesis. Additionally, RsaE supports biofilm formation by mediating the release of eDNA as stabilizing biofilm matrix component. As RsaE itself is heterogeneously expressed within biofilms, we consider this sRNA to function as a factor favoring phenotypic heterogeneity and supporting division of labor in S. epidermidis biofilm communities.


Assuntos
Matriz Extracelular/genética , Pequeno RNA não Traduzido/metabolismo , Staphylococcus epidermidis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Matriz Extracelular/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Óperon/genética , Fenótipo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Pequeno RNA não Traduzido/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus/genética , Staphylococcus epidermidis/metabolismo
4.
Mol Microbiol ; 111(6): 1571-1591, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30873665

RESUMO

Polysaccharide intercellular adhesin (PIA)-associated biofilm formation is mediated by the intercellular adhesin (ica) locus and represents a major pathomechanism of Staphylococcus epidermidis. Here, we report on a novel long non-coding (nc)RNA, named IcaZ, which is approximately 400 nucleotides in size. icaZ is located downstream of the ica repressor gene icaR and partially overlaps with the icaR 3' UTR. icaZ exclusively exists in ica-positive S. epidermidis, but not in S. aureus or other staphylococci. Inactivation of the gene completely abolishes PIA production. IcaZ is transcribed as a primary transcript from its own promoter during early- and mid-exponential growth and its transcription is induced by low temperature, ethanol and salt stress. IcaZ targets the icaR 5' UTR and hampers icaR mRNA translation, which alleviates repression of icaADBC operon transcription and results in PIA production. Interestingly, other than in S. aureus, posttranscriptional control of icaR mRNA in S. epidermidis does not involve icaR mRNA 5'/3' UTR base pairing. This suggests major structural and functional differences in icaADBC operon regulation between the two species that also involve the recruitment of ncRNAs. Together, the IcaZ ncRNA represents an unprecedented novel species-specific player involved in the control of PIA production in NBSP S. epidermidis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/fisiologia , RNA não Traduzido/genética , Staphylococcus epidermidis/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óperon , Regiões Promotoras Genéticas , Staphylococcus epidermidis/crescimento & desenvolvimento , Transcrição Gênica
5.
PNAS Nexus ; 3(2): pgae075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415217

RESUMO

Ornate, large, extremophilic (OLE) RNAs comprise a class of large noncoding RNAs in bacteria whose members form a membrane-associated ribonucleoprotein (RNP) complex. This complex facilitates cellular adaptation to diverse stresses such as exposure to cold, short-chain alcohols, and elevated Mg2+ concentrations. Here, we report additional phenotypes exhibited by Halalkalibacterium halodurans (formerly called Bacillus halodurans) strains lacking functional OLE RNP complexes. Genetic disruption of the complex causes restricted growth compared to wild-type cells when cultured in minimal media (MM) wherein glucose is replaced with alternative carbon/energy sources. Genetic suppressor selections conducted in glutamate MM yielded isolates that carry mutations in or near genes relevant to Mn2+ homeostasis (ykoY and mntB), phosphate homeostasis (phoR), and putative multidrug resistance (bmrCD). These functional links between OLE RNA, carbon/energy management, and other fundamental processes including protein secretion are consistent with the hypothesis that the OLE RNP complex is a major contributor to cellular adaptation to unfavorable growth conditions.

6.
Microorganisms ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677324

RESUMO

Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.

7.
Front Public Health ; 9: 684456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222184

RESUMO

Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75%) was the most common CoNS species identified. Nine isolates (7%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39%), erythromycin (33%) and fusidic acid (24%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23% (29/127) of the isolates, with 33% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates.


Assuntos
Farmacorresistência Bacteriana , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Coagulase/genética , Farmacorresistência Bacteriana/genética , Alemanha/epidemiologia , Humanos , Infecções Estafilocócicas/tratamento farmacológico
8.
Front Cell Infect Microbiol ; 11: 660702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829001

RESUMO

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Proteínas de Bactérias/genética , Biofilmes , Bovinos , Cromossomos/metabolismo , Regulação Bacteriana da Expressão Gênica , Plasmídeos , Polissacarídeos Bacterianos , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética
9.
J Mol Biol ; 431(23): 4684-4698, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30914292

RESUMO

Small regulatory RNAs (sRNAs) are increasingly recognized as players in the complex regulatory networks governing bacterial gene expression. RsaE (synonym RoxS) is an sRNA that is highly conserved in bacteria of the Bacillales order. Recent analyses in Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis identified RsaE/RoxS as a potent riboregulator of central carbon metabolism and energy balance with many molecular RsaE/RoxS functions and targets being shared across species. Similarities and species-specific differences in cellular processes modulated by RsaE/RoxS suggest that this sRNA plays a prominent role in the adaptation of Gram-positive bacteria to niches with varying nutrient availabilities and environmental cues. This review summarizes recent findings on the molecular function of RsaE/RoxS and its interaction with mRNA targets. Special emphasis will be on the integration of RsaE/RoxS into metabolic regulatory circuits and, derived from this, the role of RsaE/RoxS as a putative driver to generate phenotypic heterogeneity in bacterial populations. In this respect, we will particularly discuss heterogeneous RsaE expression in S. epidermidis biofilms and its possible contribution to metabolic niche diversification, programmed bacterial lysis and biofilm matrix production.


Assuntos
Adaptação Biológica , Metabolismo Energético , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , RNA Bacteriano , Pequeno RNA não Traduzido , Apoptose , Bacillus/fisiologia , Biofilmes , Evolução Biológica , Variação Biológica da População , Regulação Bacteriana da Expressão Gênica , Interferência de RNA , RNA Mensageiro/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA