Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Stem Cells ; 38(3): 395-409, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721356

RESUMO

Mesenchymal stem cells (MSCs), which are undifferentiated stem cells with the property of stemness and the potential to differentiate into multiple lineages, including osteoblasts, have attracted a great deal of attention in bone tissue engineering. Consistent with the heterogeneity of MSCs, various surface markers have been used. However, it is still unclear which markers of MSCs are best for cell amplification in vitro and later bone regeneration in vivo. Krüppel-like Factor 2 (KLF2) is an important indicator of the stemness of human MSCs (hMSCs) and as early vascularization is also critical for bone regeneration, we used KLF2 as a novel in vitro marker for MSCs and investigated the angiogenesis and osteogenesis between KLF2+ MSCs and endothelial cells (ECs). We found a synergistic interaction between hMSCs and human umbilical vein ECs (HUVECs) in that KLF2+ stemness-maintained hMSCs initially promoted the angiogenesis of HUVECs, which in turn more efficiently stimulated the osteogenesis of hMSCs. In fact, KLF2+ hMSCs secreted angiogenic factors initially, with some of the cells then differentiating into pericytes through the PDGF-BB/PDGFR-ß signaling pathway, which improved blood vessel formation. The matured HUVECs in turn synergistically enhanced the osteogenesis of KLF2+ hMSCs through upregulated vascular endothelial growth factor. A three-dimensional coculture model using cell-laden gelatin methacrylate (GelMA) hydrogel further confirmed these results. This study provides insight into the stemness-directed synergistic interaction between hMSCs and HUVECs, and our results will have a profound impact on further strategies involving the application of KLF2+ hMSC/HUVEC-laden GelMA hydrogel in vascular network bioengineering and bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos
2.
J Nanobiotechnology ; 17(1): 102, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581945

RESUMO

Natural extracellular matrices (ECMs) are three-dimensional (3D) and multi-scale hierarchical structure. However, coatings used as ECM-mimicking structures for osteogenesis are typically two-dimensional or single-scaled. Here, we design a distinct quasi-three-dimensional hierarchical topography integrated of density-controlled titania nanodots and nanorods. We find cellular pseudopods preferred to anchor deeply across the distinct 3D topography, dependently of the relative density of nanorods, which promote the osteogenic differentiation of osteoblast but not the viability of fibroblast. The in vivo experimental results further indicate that the new bone formation, the relative bone-implant contact as well as the push-put strength, are significantly enhanced on the 3D hierarchical topography. We also show that the exposures of HFN7.1 and mAb1937 critical functional motifs of fibronectin for cellular anchorage are up-regulated on the 3D hierarchical topography, which might synergistically promote the osteogenesis. Our findings suggest the multi-dimensions and multi-scales as vital characteristic of cell-ECM interactions and as an important design parameter for bone implant coatings.


Assuntos
Substitutos Ósseos/química , Nanotubos/química , Osteogênese , Titânio/química , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Fibroblastos/citologia , Masculino , Camundongos , Nanotubos/ultraestrutura , Osteoblastos/citologia , Próteses e Implantes , Coelhos
3.
J Mater Sci Mater Med ; 29(9): 136, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120587

RESUMO

Surface nanotopography and bioactive ions have been considered to play critical roles on the interactions of biomaterials with cells. In this study, a TiO2 nanorod film incorporated with Zn-containing bioactive glass (TiO2/Zn-BG) was prepared on tantalum substrate, trying to evaluate the synergistic effects of nanotopograpgy and bioactive ions to promote cellular osteogenic differentiation activity. The expression of osteogenic-related genes, ALP as well as the ECM mineralization on TiO2/Zn-BG film were significantly upregulated compared to that of the film without TiO2 nanorod nanostructure (Zn-BG) or without Zn (TiO2/BG). Moreover, a much low Zn2+ release level on TiO2/Zn-BG film was beneficial to promote the osteogenesis, which could be ascribed to that a semi-closed space established by TiO2 nanorods with adhered cells provided an appropriate micro-environment that facilitated Zn2+ adsorption.


Assuntos
Cerâmica , Nanopartículas Metálicas/química , Nanotubos/química , Osteogênese , Titânio/química , Zinco/química , Células 3T3 , Adsorção , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Adesão Celular , Diferenciação Celular , Matriz Extracelular/metabolismo , Íons , Camundongos , Nanoestruturas/química , Osteocalcina/metabolismo , Propriedades de Superfície , Tantálio/química
4.
J Mater Sci Mater Med ; 24(12): 2709-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23943062

RESUMO

Understanding and controlling the process of electrochemical deposition (ECD) of a mineralized collagen coating on metallic orthopedic implants is important for engineering highly bioactive coatings. In this work, the influence of different ECD parameters was investigated. The results showed that the mineralization degree of the coatings increased with deposition time, voltage potential and H2O2 addition, while chitosan addition led to weakening of mineralization, heavy mineralization resulted in a porous coating morphology. Furthermore, two typical coatings, dense and porous, were analyzed to investigate their microstructure and evaluated for their cytocompatibility; the dense coating showed better osteoblast adhesion and proliferation. Based on our understanding of how the different coating parameters influenced the coating, we proposed an ECD process in which the pH gradient near the cathode and the collagen isoelectric point were suggested to play crucial roles in controlling the mineralization and morphology of the coatings. The proposed ECD process may offer a guide for controlled deposition of a desired bioactive coating.


Assuntos
Materiais Revestidos Biocompatíveis/química , Colágeno/química , Células 3T3 , Animais , Bovinos , Adesão Celular , Proliferação de Células , Quitosana/química , Eletroquímica , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Camundongos , Osteoblastos/citologia , Osteoblastos/ultraestrutura
5.
Sci Technol Adv Mater ; 14(4): 045002, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877595

RESUMO

Ti-doped barium ferrite powders BaFe12-x Ti x O19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol-gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe3+ ions and the exchange coupling effect between Fe3+ and Fe2+ ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around -45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties.

6.
Nanoscale ; 15(11): 5379-5390, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36825767

RESUMO

Mild thermal stimulation in vivo could induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, nano-functionalized photothermal extracellular matrix (ECM) nanocomposite films were obtained through adding graphene during cell culture, so that graphene could directly integrate with the ECM secreted by cells. Owing to the similarity of the ECM to the in vivo microenvironment and the apparent photothermal effect of graphene nanoflakes, heat could be generated and transferred at the material-cell interface in a biomimetic way. It was demonstrated that such nanocomposite films achieved an interface temperature rise with light illumination. This could be easily sensed by BMSCs through the ECM. According to alkaline phosphatase, osteogenic related gene expression, mineral deposition, and upregulated expression of heat shock protein (HSP70) and p-ERK, composite films with proper illumination significantly promoted the differentiation of BMSCs into osteoblasts. This work endeavors to study the thermal regulation of BMSC differentiation and provide a new perspective on biocompatible osteo-implant materials which can be remotely controlled.


Assuntos
Grafite , Células-Tronco Mesenquimais , Nanocompostos , Osteogênese , Grafite/farmacologia , Grafite/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Diferenciação Celular , Células da Medula Óssea
7.
Colloids Surf B Biointerfaces ; 222: 113016, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427406

RESUMO

Bone tissue engineering requires a material that can simultaneously promote osteogenic differentiation and anti-inflammatory effects at specific times in response to a series of problems after bone implantation. In this study, the porous network-like titanium matrix was constructed and polypyrrole/dexamethasone (Ppy/Dex) composite coatings with three-dimensional nano-network structure were prepared by electrochemical deposition. The biocompatibility of the composite coatings was further improved by the composite of the extracellular matrix (ECM). The Ppy/Dex/ECM composite coatings released Dex by changing the redox state of Ppy under the electrical stimulation of negative pulses, achieving a drug release controlled by electric field. In terms of osteogenic differentiation, the Ppy/Dex/ECM composite coatings exhibited the best osteogenic activity under electrical controlled release, indicating the synergistic effect of Dex and ECM on osteogenic differentiation. In terms of anti-inflammatory properties, ECM exhibited simultaneous inhibition of both pro- and anti-inflammatory process, while Dex demonstrated significant promotion of anti-inflammatory processes. In this work, the effect of electrical controlled drug release on osteogenic differentiation and inflammation in the ECM cell microenvironment was achieved by preparing Ppy/Dex/ECM composite coatings, which is of great significance for bone tissue engineering and regenerative medicine.


Assuntos
Osteogênese , Polímeros , Polímeros/química , Liberação Controlada de Fármacos , Dexametasona/farmacologia , Dexametasona/química , Pirróis/farmacologia , Pirróis/química , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Matriz Extracelular
8.
Colloids Surf B Biointerfaces ; 221: 112980, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356402

RESUMO

Surface potential of biomaterials is found to be important for wound healing. Here, poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) films with different surface potentials and piezoelectric responses were prepared and explored for the effect of surface potential on wound healing. The crystalline state of P(VDF-TrFE) films were characterized with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transformed infrared spectroscopy (FTIR), illustrated that the electric polarization will promote the crystallization of the ß phase of P(VDF-TrFE), in which the content of ß phase increased from 82.9 % to 86.8 % compared with the control. Then, Kelvin potential and piezoelectric coefficient d33 were to evaluate surface potential and polarization performance. Moreover, bovine serum albumin (BSA) adsorption and cell culture results showed that high surface potential can promote protein adsorption as well as fibroblast proliferation and macrophage polarization. Finally, in vivo experiments indicated that high voltage polarized P(VDF-TrFE) films can generate higher dynamic potential up to 2.3 V, and promoted wound healing from the phases of inflammation, proliferation and remodeling, the wound healing rate of which was 88.8 % ± 0.8 %, significantly higher than 79.1 % ± 2.5 % and 86.4 % ± 1.8 % of blank and control. In general, this work revealed that polarized P(VDF-TrFE) films can promote wound healing, shed light on designing wound healing materials with similar properties.


Assuntos
Materiais Biocompatíveis , Polivinil , Polivinil/química , Materiais Biocompatíveis/química , Eletricidade , Cicatrização
9.
ACS Biomater Sci Eng ; 9(5): 2483-2494, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092608

RESUMO

Osteoimmunomodulation has been considered to play a key role in osteointegration of orthopedic biomaterials. However, regulation of the macrophage phenotype in vivo with a spatiotemporal controllable way still remains a challenge. In this study, we designed a novel magnetic-responsive mineralized collagen coating to exert remotely controlled magneto-mechanical stimulation on macrophages using an external magnetic field. The magneto-mechanical stimulation exhibited immunomodulatory capability to activate M2 macrophage polarization via triggering the integrin-related cascade pathway and suppressing the phosphorylation of JNK in the MAPK pathway. The optimized inflammatory microenvironment subsequently promoted the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and the osteointegration in vivo. This work, therefore, provides a remote spatiotemporal controllable strategy to promote the osteointegration of orthopedic biomaterials via regulation of the osteoimmune microenvironment.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Macrófagos/metabolismo , Materiais Biocompatíveis , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular
10.
ACS Biomater Sci Eng ; 9(5): 2524-2533, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092816

RESUMO

Surface potentials of biomaterials have been shown to regulate cell fate commitment. However, the effects of chirality-patterned potential distribution on macrophage polarization are still only beginning to be explored. In this work, we demonstrated that the chirality-patterned potential distribution of CoFe2O4/poly(vinylidene fluoride-trifluoroethylene) (CFO/P(VDF-TrFE)) films could significantly down-regulate the M1 polarization of bone marrow-derived macrophages (BMDMs). Specifically, the dextral-patterned surface potential distribution simultaneously up-regulated the expression of M2-related markers of BMDMs. The results were attributed to the sensitive difference of integrin subunits (α5ß1 and αvß3) to the dextral- and sinistral-patterned surface potential distribution, respectively. The interaction difference between the integrin subunits and surface potential distribution altered the cell adhesion and cytoskeletal structure and thereby the polarization behavior of BMDMs. This work, therefore, emphasizes the importance of chirality of potential distribution on cell behavior and provides a new strategy to regulate the immune response of biomaterials.


Assuntos
Materiais Biocompatíveis , Integrinas , Diferenciação Celular
11.
ACS Biomater Sci Eng ; 9(5): 2615-2624, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37025039

RESUMO

Electrical stimulation (ES) has been considered a promising strategy in regulating intracellular communication, membrane depolarization, ion transport, etc. Meanwhile, cell topography, such as the alignment and elongation in anisotropic orientation, also plays a critical role in triggering mechanotransduction as well as the cellular fate. However, coupling of ES and cell orientation to regulate the polarization of macrophages is yet to be explored. In this work, we intended to explore the polarization of macrophages on a poly(vinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] film with intrinsic microstripe roughness, which was covered on indium tin oxide planar microelectrodes. We found that mouse bone marrow-derived macrophages (BMDMs) cultured on a P(VDF-TrFE) film exhibited an elongated morphology aligned with the microstripe crystal whisker, but their polarization behavior was not affected. However, the elongated cells were susceptible to ES and upregulated their M2 polarization, as verified by the related expression of phenotype markers, cytokines, and genes, while not affecting M1 polarization. This is due to the increased expression of the M2 polarization receptor interleukin-4Rα on the surface of elongated BMDMs, while the M1 polarization receptor toll-like receptor 4 was not affected. Thus, M2 polarization was singularly enhanced after activation of polarization by ES. The combination of surface morphology and ES to promote M2 single polarization in this work provides a new perspective for regulating macrophage polarization in the field of immunotherapy.


Assuntos
Macrófagos , Mecanotransdução Celular , Camundongos , Animais , Macrófagos/metabolismo , Diferenciação Celular , Estimulação Elétrica
12.
ACS Appl Mater Interfaces ; 15(39): 46493-46503, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729066

RESUMO

Surface potential is rarely investigated as an independent factor in influencing tissue regeneration on the metal surface. In this work, the surface potential on the titanium (Ti) surface was designed to be tailored and adjusted independently, which arises from the ferroelectricity and piezoelectricity of poled poly(vinylidene fluoride-trifluoroethylene) (PVTF). Notably, it is found that such controllable surface potential on the metal surface significantly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro as well as bone regeneration in vivo. In addition, the intracellular calcium ion (Ca2+) concentration measurement further proves that such controllable surface potential on the metal surface could activate the transmembrane calcium channels and allow the influx of extracellular Ca2+ into the cytoplasm. That might be the reason for improved osteogenic differentiation of BMSCs and bone regeneration. These findings reveal the potential of the metal surface with improved bioactivity for stimulation of osteogenesis and show great prospects for fabricable implantable medical devices with adjustable surface potential.

13.
Bioact Mater ; 22: 168-179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36203959

RESUMO

Dynamic regulation of cell-extracellular matrix (ECM)-material interactions is crucial for various biomedical applications. In this study, a light-activated molecular switch for the modulation of cell attachment/detachment behaviors was established on monolayer graphene (Gr)/n-type Silicon substrates (Gr/Si). Initiated by light illumination at the Gr/Si interface, pre-adsorbed proteins (bovine serum albumin, ECM proteins collagen-1, and fibronectin) underwent protonation to achieve negative charge transfer to Gr films (n-doping) through π-π interactions. This n-doping process stimulated the conformational switches of ECM proteins. The structural alterations in these ECM interactors significantly reduced the specificity of the cell surface receptor-ligand interaction (e.g., integrin recognition), leading to dynamic regulation of cell adhesion and eventual cell detachment. RNA-sequencing results revealed that the detached bone marrow mesenchymal stromal cell sheets from the Gr/Si system manifested regulated immunoregulatory properties and enhanced osteogenic differentiation, implying their potential application in bone tissue regeneration. This work not only provides a fast and feasible method for controllable cells/cell sheets harvesting but also gives new insights into the understanding of cell-ECM-material communications.

14.
J Mater Sci Mater Med ; 23(10): 2413-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22669283

RESUMO

In this study, a mineralized collagen coating was electrolytically deposited onto titanium. The results showed that the mineralized collagen coatings with dense or porous morphology could be obtained. The mineral phase was mainly hydroxyapatite. In vitro evaluation showed the mineralized collagen coatings were stable in Kokubo's simulated body fluid, and displayed a good cytocompatibility in the cell multiplication test. The mineralized collagen coatings loaded with vancomycin hydrochloride showed an inhibitory effect on the growth of S. aureus. The present mineralized collagen coating demonstrates good suitability for surface modification of orthopedic metal implants.


Assuntos
Antibacterianos/administração & dosagem , Colágeno/química , Implantes de Medicamento , Titânio/química , Vancomicina/administração & dosagem , Antibacterianos/farmacologia , Adesão Celular , Linhagem Celular , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia
15.
Colloids Surf B Biointerfaces ; 216: 112528, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35525229

RESUMO

Macrophages polarization in bone immune microenvironment is crucial in bone regeneration. In this work, mineralized collagen (MC) coatings with photo-thermal effect were prepared through incorporation of polydopamine (PDA). MC coatings with different thicknesses were deposited on titanium substrate through electrochemical deposition. PDA preformed on the substrate, acting as a photo-thermal agent. The effects of light illumination, i.e., different thermal effects, on the polarization of mouse bone marrow-derived macrophages were explored. It was found that heat can promote the M1 polarization of macrophages and inhibit the M2 polarization. Also, gene expression results revealed that such photo illumination based macrophage modulation is effective and safe. It provides a possible way for the design of functional materials to regulate the bone immune microenvironment.


Assuntos
Colágeno , Temperatura Alta , Animais , Regeneração Óssea , Colágeno/farmacologia , Ativação de Macrófagos , Macrófagos , Camundongos
16.
J Tissue Eng Regen Med ; 16(5): 448-459, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35225425

RESUMO

Macrophages have two functionalized phenotypes, M1 and M2, and the regulation of M1/M2 polarization of macrophages is critical for tissue repair. Tissue-derived immune factors are considered the major drivers of macrophage polarization. Based on the main cytokine-induced polarization pathways, we tested the effect of electrical stimulation (ES) of macrophages on the regulation of M1/M2 polarization and a possible synergistic effect with the cytokines. Indium tin oxide (ITO) planar microelectrodes were used to produce ES under different voltages, frequencies and waveforms. We evaluated the influence of ES on the cytokine-induced M1/M2 polarization using mouse bone marrow-derived macrophages cultured with both lipopolysaccharide (LPS)/IFN-γ factors and IL-4 factors for M1 and M2, respectively. The results showed that ES promoted the cytokine-induced macrophage polarization. Importantly, we found that stimulation with a square waveform selectively promoted LPS/IFN-γ-induced M1 polarization, while stimulation with a sinusoidal waveform promoted both LPS/IFN-γ-induced M1, and IL-4-induced M2 polarization. Mechanistically, stimulation with a square waveform affected the intracellular ion concentration, whereas stimulation with a sinusoidal waveform promoted both the intracellular ion concentration and membrane receptors. We hereby establish an ES-mediated strategy for immunomodulation via macrophage polarization.


Assuntos
Citocinas , Lipopolissacarídeos , Animais , Citocinas/metabolismo , Estimulação Elétrica , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos
17.
Biomater Sci ; 10(16): 4576-4587, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35791864

RESUMO

Piezoelectric poly(vinylidene fluoride-trifluoroethylene) has demonstrated an ability to promote osteogenesis, and biomaterials with a chirality-patterned topological surface could enhance cellular osteogenic differentiation. In this work, we created a chirality-patterned surface potential distribution of CoFe2O4/poly(vinylidene fluoride-trifluoroethylene (CFO/P(VDF-TrFE)) membranes to explore their osteogenic response under no change in surface chemical and topology, attempting to further strengthen the ability of the membranes to promote osteogenesis. The chirality-patterned surface potential distribution was established by microdomain contact polarization with the help of sinistral/dextral-patterned ITO interdigital microelectrodes. In the in vitro evaluations, the mesenchymal stem cells showed a positive response in osteogenic differentiation to CFO/P(VDF-TrFE) membranes with both sinistral- and dextral-patterned surface potential distributions, however, the dextral-patterned distribution gave a stronger response than the sinistral-patterned one. And the in vivo evaluation showed a response tend in new bone tissue formation similar to the in vitro evaluations. The stronger response in osteogenic differentiation and osteogenesis for the CFO/P(VDF-TrFE) membrane with the dextral-patterned distributions may be attributed to that the intense interaction of the cells with the electrophysiological microenvironment appears due to a correspondingly higher expression of integrin α5ß1, which significantly up-regulates the Arp2/3 complex expression, a crucial factor for cytoskeleton reorganization, possibly increases cytoskeleton contractility, and strengthens the transduction of the osteogenesis-related signaling cascade. This work proves that the chirality-patterns in surface potential distributions could provide an osteogenic response similar to a chirality-patterned topological surface.


Assuntos
Osteogênese , Polivinil , Materiais Biocompatíveis/química , Diferenciação Celular , Polivinil/química , Titânio/química
18.
Colloids Surf B Biointerfaces ; 210: 112227, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838419

RESUMO

Mechanical stimulation has been considered to be critical to cellular response and tissue regeneration. However, harnessing the direction of mechanical stimulation during osteogenesis still remains a challenge. In this study, we designed a series of novel magnetized collagen coatings (MCCs) (randomly or parallel-oriented collagen fibers) to exert the anisotropic mechanical stimulation using oriented magnetic actuation during osteogenesis. Strikingly, we found the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were significantly up-regulated when the direction of magnetic actuation was parallel to the randomly-oriented collagen coating surface, in contrast to the down-regulated capacity under the perpendicular magnetic actuation. Moreover, further exerting a parallel mechanical stimulation along the parallel-oriented collagen coating, which cells have been oriented by the oriented collagens, were not only able to up-regulate the osteogenic differentiation of BMSCs but also promote the new bone formation during osteogenesis in vivo. We also demonstrated the anisotropic magneto-mechanical stimulation for the osteogenic differences might be attributed to the stretching or bending tensile status of collagen fibers controlled by the direction of magnetic actuation, driving the α5ß1-dependent integrin signaling cascade. This study therefore got insight of understanding the directional mechanical stimulation on osteogenesis, and also paved a way for sustaining regulation of the biomaterials-host interface.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Materiais Biocompatíveis , Diferenciação Celular , Células Cultivadas , Colágeno
19.
J Nanosci Nanotechnol ; 11(12): 11151-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22409075

RESUMO

TiSi nanowires were deposited on both Si(111) and glass substrates by using SiH4, TiCl4 and N2 as the Si, Ti precursors and diluted gas respectively through atmosphere pressure chemical vapor deposition (APCVD) method. Effects of the substrates on formation of the nanowires were investigated. The results show that the nanowires can be formed on both Si(111) and glass substrates at ratio of SiH4/TiCl4 of 4. However, the quantities of the TiSi nanowires that formed with glass substrate are less than that with Si(111) substrate. The nanowires formed with glass substrate has length of 2-3 microm and diameters of 15-25 nm while that is 4-5 microm and 25-35 nm respectively with Si(111) substrate. Great quantities of the titanium silicide nanowires with relative higher contents of the C54 TiSi2 crystalline phase underneath can be obtained through improving the deposition conditions.

20.
J Biomed Mater Res B Appl Biomater ; 109(12): 2227-2236, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34080765

RESUMO

Electrical stimulation has been proved to be critical to regulate cell behavior. But, cell behavior is also susceptible to multiple parameters of the adverse interferences such as surface current, electrochemical reaction products, and non-uniform compositions, which often occur during direct electric stimulation. To effectively prevent the adverse interferences, a novel piezoelectric poly(vinylidene fluoride-trfluoroethylene)(P(VDF-TrFE)) layer was designed to coat onto the indium tin oxide (ITO) planar microelectrode. We found the electrical stimulation was able to regulate the osteogenic differentiation of mesenchymal stem cells (MSCs) through calcium-mediated PKC signaling pathway. Meanwhile, the surface charge of the designed P(VDF-TrFE) coating layer could be easily controlled by the pre-polarization process, which was demonstrated to trigger integrin-mediated FAK signaling pathway, finally up-regulating the osteogenic differentiation of MSCs. Strikingly, the crosstalk in the downstream of the two signaling cascades further strengthened the ERK pathway activation for osteogenic differentiation of MSCs. This P(VDF-TrFE) layer coated electrical stimulation microelectrodes therefore provide a distinct strategy to manipulate multiple-elements of biomaterial surface to regulate stem cell fate commitment.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Microeletrodos , Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA