Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(1): 269-276, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525692

RESUMO

The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic, electrical control of light propagation at the nanoscale. Few-layer black phosphorus is a promising material for these applications due to its in-plane anisotropic, quantum well band structure, with a direct band gap that can be tuned from 0.3 to 2 eV with a number of layers and subbands that manifest as additional optical transitions across a wide range of energies. In this Letter, we report an experimental investigation of three different, anisotropic electro-optic mechanisms that allow electrical control of the complex refractive index in few-layer black phosphorus from the mid-infrared to the visible: Pauli-blocking of intersubband optical transitions (the Burstein-Moss effect); the quantum-confined Stark effect; and the modification of quantum well selection rules by a symmetry-breaking, applied electric field. These effects generate near-unity tuning of the BP oscillator strength for some material thicknesses and photon energies, along a single in-plane crystal axis, transforming absorption from highly anisotropic to nearly isotropic. Lastly, the anisotropy of these electro-optical phenomena results in dynamic control of linear dichroism and birefringence, a promising concept for active control of the complex polarization state of light, or propagation direction of surface waves.

2.
Nat Mater ; 17(10): 943, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30115965

RESUMO

In the version of this Perspective originally published, the titles of the references were missing; all versions have now been amended to include them.

3.
Nat Mater ; 17(12): 1164, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315211

RESUMO

In the version of this Perspective originally published, Fig. 1 was missing the following credit line from the caption: 'Background image from ESA/Hubble (A. Fujii).' This has now been corrected in the online versions of the Perspective.

4.
Nano Lett ; 18(9): 5583-5589, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30063836

RESUMO

Light sails propelled by radiation pressure from high-power lasers have the potential to achieve relativistic spaceflight. In order to propel a spacecraft to relativistic speeds, an ultrathin, gram-sized light sail will need to be stably accelerated by lasers with ∼MW/cm2 intensities operating in the near-infrared spectral range. Such a laser-driven sail requires multiband electromagnetic functionality: it must simultaneously exhibit very low absorptivity in the (Doppler-broadened) laser beam spectrum in the near-infrared and high emissivity in the mid-infrared for efficient radiative cooling. These engineering challenges present an opportunity for nanophotonic design. Here, we show that designed thin-film heterostructures could become multifunctional building-block elements of the light sail, due to their ability to achieve substantial reflectivity while maintaining low absorption in the near-infrared, significant emissivity in the mid-infrared, and a very low mass. For a light sail carrying a payload, we propose a relevant figure of merit-the reflectivity adjusted area density-that can capture the trade-off between sail mass and reflectivity, independent of other quantities such as the incident beam power, phased array size, or the payload mass. Furthermore, we present designs for effective thermal management via radiative cooling and compare propulsion efficiencies for several candidate materials, using a general approach that could apply to a broad range of high-power laser propulsion problems.

6.
ACS Nano ; 17(19): 19011-19021, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37721430

RESUMO

Since dissipative processes are ubiquitous in semiconductors, characterizing how electronic and thermal energy transduce and transport at the nanoscale is vital for understanding and leveraging their fundamental properties. For example, in low-dimensional transition metal dichalcogenides (TMDCs), excess heat generation upon photoexcitation is difficult to avoid since even with modest injected exciton densities exciton-exciton annihilation still occurs. Both heat and photoexcited electronic species imprint transient changes in the optical response of a semiconductor, yet the distinct signatures of each are difficult to disentangle in typical spectra due to overlapping resonances. In response, we employ stroboscopic optical scattering microscopy (stroboSCAT) to simultaneously map both heat and exciton populations in few-layer MoS2 on relevant nanometer and picosecond length- and time scales and with 100-mK temperature sensitivity. We discern excitonic contributions to the signal from heat by combining observations close to and far from exciton resonances, characterizing the photoinduced dynamics for each. Our approach is general and can be applied to any electronic material, including thermoelectrics, where heat and electronic observables spatially interplay, and it will enable direct and quantitative discernment of different types of coexisting energy without recourse to complex models or underlying assumptions.

7.
ACS Appl Mater Interfaces ; 13(38): 45600-45608, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34519472

RESUMO

We report the design, fabrication, and characterization of silicon heterojunction microcells, a new type of photovoltaic cell that leverages high-efficiency bulk wafers in a microscale form factor, while also addressing the challenge of passivating microcell sidewalls to mitigate carrier recombination. We present synthesis methods exploiting either dry etching or laser cutting to realize microcells with native oxide-based edge passivation. Measured microcell performance for both fabrication processes is compared to that in simulations. We characterize the dependence of microcell open-circuit voltage (Voc) on the cell area-perimeter ratio and examine synthesis processes that affect edge passivation quality, such as sidewall damage removal, the passivation material, and the deposition technique. We report the highest Si microcell Voc to date (588 mV, for a 400 µm × 400 µm × 80 µm device), demonstrate Voc improvements with deposited edge passivation of up to 55 mV, and outline a pathway to achieve microcell efficiencies surpassing 15% for such device sizes.

8.
ACS Nano ; 14(2): 1350-1359, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31442375

RESUMO

Monolayer transition-metal dichalcogenides (TMDCs) in the 2H-phase are promising semiconductors for opto-valleytronic and opto-spintronic applications because of their strong spin-valley coupling. Here, we report detailed studies of opto-valleytronic properties of heterogeneous domains in CVD-grown monolayer WS2 single crystals. By illuminating WS2 with off-resonance circularly polarized light and measuring the resulting spatially resolved circularly polarized emission (Pcirc), we find significantly large circular polarization (Pcirc up to 60% and 45% for α- and ß-domains, respectively) already at 300 K, which increases to nearly 90% in the α-domains at 80 K. Studies of spatially resolved photoluminescence (PL) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Kelvin-probe force microscopy, and conductive atomic force microscopy reveal direct correlation among the PL intensity, defect densities, and chemical potential, with the α-domains showing lower defect densities and a smaller work function by 0.13 eV than the ß-domains. This work function difference indicates the occurrence of type-two band alignments between the α- and ß-domains. We adapt a classical model to explain how electronically active defects may serve as nonradiative recombination centers and find good agreement between experiments and the model. Scanning tunneling microscopic/spectroscopic (STM/STS) studies provide further evidence for tungsten vacancies (WVs) being the primary defects responsible for the suppressed PL and circular polarization in WS2. These results therefore suggest a pathway to control the opto-valleytronic properties of TMDCs by means of defect engineering.

9.
Sci Adv ; 5(12): eaax6061, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31903417

RESUMO

Two-dimensional transition metal dichalcogenides are promising candidates for ultrathin optoelectronic devices due to their high absorption coefficients and intrinsically passivated surfaces. To maintain these near-perfect surfaces, recent research has focused on fabricating contacts that limit Fermi-level pinning at the metal-semiconductor interface. Here, we develop a new, simple procedure for transferring metal contacts that does not require aligned lithography. Using this technique, we fabricate vertical Schottky-junction WS2 solar cells, with Ag and Au as asymmetric work function contacts. Under laser illumination, we observe rectifying behavior and open-circuit voltage above 500 mV in devices with transferred contacts, in contrast to resistive behavior and open-circuit voltage below 15 mV in devices with evaporated contacts. One-sun measurements and device simulation results indicate that this metal transfer process could enable high specific power vertical Schottky-junction transition metal dichalcogenide photovoltaics, and we anticipate that this technique will lead to advances for two-dimensional devices more broadly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA