Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(13): ar128, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729017

RESUMO

Although the RAS oncogene has been extensively studied, new aspects concerning its role and regulation in normal biology and cancer continue to be discovered. Recently, others and we have shown that the mechanistic Target of Rapamycin Complex 2 (mTORC2) is a Ras effector in Dictyostelium and mammalian cells. mTORC2 plays evolutionarily conserved roles in cell survival and migration and has been linked to tumorigenesis. Because RAS is often mutated in lung cancer, we investigated whether a Ras-mTORC2 pathway contributes to enhancing the migration of lung cancer cells expressing oncogenic Ras. We used A549 cells and CRISPR/Cas9 to revert the cells' KRAS G12S mutation to wild-type and establish A549 revertant (REV) cell lines, which we then used to evaluate the Ras-mediated regulation of mTORC2 and cell migration. Interestingly, our results suggest that K-Ras and mTORC2 promote A549 cell migration but as part of different pathways and independently of Ras's mutational status. Moreover, further characterization of the A549REV cells revealed that loss of mutant K-Ras expression for the wild-type protein leads to an increase in cell growth and proliferation, suggesting that the A549 cells have low KRAS-mutant dependency and that recovering expression of wild-type K-Ras protein increases these cells tumorigenic potential.


Assuntos
Dictyostelium , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Genes ras , Células A549 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Dictyostelium/metabolismo , Proliferação de Células , Mutação/genética , Linhagem Celular Tumoral , Mamíferos/metabolismo
2.
Mol Biol Cell ; 34(2): ar9, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542482

RESUMO

We previously identified the mechanistic target of rapamycin complex 2 (mTORC2) as an effector of Ras for the control of directed cell migration in Dictyostelium. Recently, the Ras-mediated regulation of mTORC2 was found to be conserved in mammalian cells, and mTORC2 was shown to be an effector of oncogenic Ras. Interestingly, mTORC2 has been linked to cancer cell migration, and particularly in breast cancer. Here, we investigated the role of Ras in promoting the migration and invasion of breast cancer cells through mTORC2. We observed that both Ras and mTORC2 promote the migration of different breast cancer cells and breast cancer cell models. Using HER2 and oncogenic Ras-transformed breast epithelial MCF10A cells, we found that both wild-type Ras and oncogenic Ras promote mTORC2 activation and an mTORC2-dependent migration and invasion in these breast cancer models. We further observed that, whereas oncogenic Ras-transformed MCF10A cells display uncontrolled cell proliferation and invasion, disruption of mTORC2 leads to loss of invasiveness only. Together, our findings suggest that, whereas the Ras-mediated activation of mTORC2 is expected to play a minor role in breast tumor formation, the Ras-mTORC2 pathway plays an important role in promoting the migration and invasion of breast cancer cells.


Assuntos
Neoplasias da Mama , Dictyostelium , Animais , Feminino , Humanos , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Dictyostelium/metabolismo , Células Epiteliais/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo , Proteínas ras/metabolismo
3.
J Med Chem ; 66(1): 677-694, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516003

RESUMO

A recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms. The top compounds were all tested against a panel of cancer cell lines and disappointingly showed little effect. The top-performing compound, 8, was retested using a series of endoplasmic reticulum (ER) stress-inducing agents and found to synergize with these agents. Finally, 8 was tested in a spheroid tumor model and found to be more potent than in two-dimensional models. The optimized Grp78 inhibitors are the first reported isoform-selective small-molecule-competitive inhibitors of an Hsp70-substrate interaction.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Chaperonas Moleculares/química , Proteínas de Choque Térmico HSP70 , Estresse do Retículo Endoplasmático , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA