Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 20(8): 1159-1169, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443337

RESUMO

The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation.


Assuntos
Benchmarking , RNA Circular , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
2.
Nucleic Acids Res ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994560

RESUMO

In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.

3.
Hippocampus ; 33(4): 391-401, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36468233

RESUMO

Hippocampal adult neural stem cells emerge from progeny of the neuroepithelial lineage during murine brain development. Hippocampus development is increasingly well understood. However, the clonal relationships between early neuroepithelial stem cells and postnatal neurogenic cells remain unclear, especially at the single-cell level. Here we report fate bias and gene expression programs in thousands of clonally related cells in the juvenile hippocampus based on single-cell RNA-seq of barcoded clones. We find evidence for early fate restriction of neuroepithelial stem cells to either neurogenic progenitor cells of the dentate gyrus region or oligodendrogenic, non-neurogenic fate supplying cells for other hippocampal regions including gray matter areas and the Cornu ammonis region 1/3. Our study provides new insights into the phenomenon of early fate restriction guiding the development of postnatal hippocampal neurogenesis.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Camundongos , Neurônios/metabolismo , Hipocampo/metabolismo , Neurogênese/genética , Células-Tronco Neurais/metabolismo , Córtex Cerebral
4.
Proc Natl Acad Sci U S A ; 117(14): 7575-7583, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213592

RESUMO

For cells to replicate, a sufficient supply of biosynthetic precursors is needed, necessitating the concerted action of metabolism and protein synthesis during progressive phases of cell division. A global understanding of which biosynthetic processes are involved and how they are temporally regulated during replication is, however, currently lacking. Here, quantitative multiomics analysis is used to generate a holistic view of the eukaryal cell cycle, using the budding yeast Saccharomyces cerevisiae Protein synthesis and central carbon pathways such as glycolysis and amino acid metabolism are shown to synchronize their respective abundance profiles with division, with pathway-specific changes in metabolite abundance also being reflected by a relative increase in mitochondrial volume, as shown by quantitative fluorescence microscopy. These results show biosynthetic precursor production to be temporally regulated to meet phase-specific demands of eukaryal cell division.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Genômica , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética
5.
Genes Dev ; 29(1): 48-62, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25561495

RESUMO

Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional properties of this new family of transcription factors.


Assuntos
Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Blastoderma/metabolismo , Proteínas Correpressoras/química , Proteínas Correpressoras/metabolismo , Cristalografia , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/química
6.
J Sleep Res ; 31(2): e13472, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34476847

RESUMO

The hormone fibroblast growth factor 21 (FGF21) modulates tissue metabolism and circulates at higher levels in metabolic conditions associated with chronic sleep-wake disruption, such as type 2 diabetes and obesity. In the present study, we investigated whether acute sleep loss impacts circulating levels of FGF21 and tissue-specific production, and response pathways linked to FGF21. A total of 15 healthy normal-weight young men participated in a randomised crossover study with two conditions, sleep loss versus an 8.5-hr sleep window. The evening before each intervention, fasting blood was collected. Fasting, post-intervention morning skeletal muscle and adipose tissue samples underwent quantitative polymerase chain reaction and DNA methylation analyses, and serum FGF21 levels were measured before and after an oral glucose tolerance test. Serum levels of FGF21 were higher after sleep loss compared with sleep, both under fasting conditions and following glucose intake (~27%-30%, p = 0.023). Fasting circulating levels of fibroblast activation protein, a protein which can degrade circulating FGF21, were not altered by sleep loss, whereas DNA methylation in the FGF21 promoter region increased only in adipose tissue. However, even though specifically the muscle exhibited transcriptional changes indicating adverse alterations to redox and metabolic homeostasis, no tissue-based changes were observed in expression of FGF21, its receptors, or selected signalling targets, in response to sleep loss. In summary, we found that acute sleep loss resulted in increased circulating levels of FGF21 in healthy young men, which may occur independent of a tissue-based stress response in metabolic peripheral tissues. Further studies may decipher whether changes in FGF21 signalling after sleep loss modulate metabolic outcomes associated with sleep or circadian disruption.


Assuntos
Diabetes Mellitus Tipo 2 , Estudos Cross-Over , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Sono
7.
Genes Dev ; 27(6): 602-14, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23468431

RESUMO

We recently reported that Drosophila Insensitive (Insv) promotes sensory organ development and has activity as a nuclear corepressor for the Notch transcription factor Suppressor of Hairless [Su(H)]. Insv lacks domains of known biochemical function but contains a single BEN domain (i.e., a "BEN-solo" protein). Our chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) analysis confirmed binding of Insensitive to Su(H) target genes in the Enhancer of split gene complex [E(spl)-C]; however, de novo motif analysis revealed a novel site strongly enriched in Insv peaks (TCYAATHRGAA). We validate binding of endogenous Insv to genomic regions bearing such sites, whose associated genes are enriched for neural functions and are functionally repressed by Insv. Unexpectedly, we found that the Insv BEN domain binds specifically to this sequence motif and that Insv directly regulates transcription via this motif. We determined the crystal structure of the BEN-DNA target complex, revealing homodimeric binding of the BEN domain and extensive nucleotide contacts via α helices and a C-terminal loop. Point mutations in key DNA-contacting residues severely impair DNA binding in vitro and capacity for transcriptional regulation in vivo. We further demonstrate DNA-binding and repression activities by the mammalian neural BEN-solo protein BEND5. Altogether, we define novel DNA-binding activity in a conserved family of transcriptional repressors, opening a molecular window on this extensive gene family.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Modelos Moleculares , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência
8.
Development ; 144(17): 3145-3155, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760809

RESUMO

Grainy head (Grh) is a conserved transcription factor (TF) controlling epithelial differentiation and regeneration. To elucidate Grh functions we identified embryonic Grh targets by ChIP-seq and gene expression analysis. We show that Grh controls hundreds of target genes. Repression or activation correlates with the distance of Grh-binding sites to the transcription start sites of its targets. Analysis of 54 Grh-responsive enhancers during development and upon wounding suggests cooperation with distinct TFs in different contexts. In the airways, Grh-repressed genes encode key TFs involved in branching and cell differentiation. Reduction of the POU domain TF Ventral veins lacking (Vvl) largely ameliorates the airway morphogenesis defects of grh mutants. Vvl and Grh proteins additionally interact with each other and regulate a set of common enhancers during epithelial morphogenesis. We conclude that Grh and Vvl participate in a regulatory network controlling epithelial maturation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma de Inseto , Fatores do Domínio POU/química , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Imunidade Inata/genética , Morfogênese/genética , Especificidade de Órgãos/genética , Fatores do Domínio POU/metabolismo , Ligação Proteica , Domínios Proteicos , Sistema Respiratório/metabolismo , Elementos de Resposta/genética
9.
Genome Res ; 24(7): 1236-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24985917

RESUMO

We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage.


Assuntos
Drosophila/genética , Variação Genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Linhagem Celular , Biologia Computacional/métodos , Expressão Gênica , Loci Gênicos , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Anotação de Sequência Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Interferente Pequeno/química , Alinhamento de Sequência
10.
Genome Res ; 23(5): 812-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23520388

RESUMO

Remarkable advances in techniques for gene expression profiling have radically changed our knowledge of the transcriptome. Recently, the mammalian brain was reported to express many long intergenic noncoding (lincRNAs) from loci downstream from protein-coding genes. Our experimental tests failed to validate specific accumulation of lincRNA transcripts, and instead revealed strongly distal 3' UTRs generated by alternative cleavage and polyadenylation (APA). With this perspective in mind, we analyzed deep mammalian RNA-seq data using conservative criteria, and identified 2035 mouse and 1847 human genes that utilize substantially distal novel 3' UTRs. Each of these extends at least 500 bases past the most distal 3' termini available in Ensembl v65, and collectively they add 6.6 Mb and 5.1 Mb to the mRNA space of mouse and human, respectively. Extensive Northern analyses validated stable accumulation of distal APA isoforms, including transcripts bearing exceptionally long 3' UTRs (many >10 kb and some >18 kb in length). The Northern data further illustrate that the extensions we annotated were not due to unprocessed transcriptional run-off events. Global tissue comparisons revealed that APA events yielding these extensions were most prevalent in the mouse and human brain. Finally, these extensions collectively contain thousands of conserved miRNA binding sites, and these are strongly enriched for many well-studied neural miRNAs. Altogether, these new 3' UTR annotations greatly expand the scope of post-transcriptional regulatory networks in mammals, and have particular impact on the central nervous system.


Assuntos
Regiões 3' não Traduzidas/genética , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Poliadenilação/genética , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de RNA
11.
Nucleic Acids Res ; 42(3): 1987-2002, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24220090

RESUMO

Although Dicer is essential for general microRNA (miRNA) biogenesis, vertebrate mir-451 is Dicer independent. Instead, its short pre-miRNA hairpin is 'sliced' by Ago2, then 3'-resected into mature miRNAs. Here, we show that Drosophila cells and animals generate functional small RNAs from mir-451-type precursors. However, their bulk maturation arrests as Ago-cleaved pre-miRNAs, which mostly associate with the RNAi effector AGO2. Routing of pre-mir-451 hairpins to the miRNA effector AGO1 was inhibited by Dicer-1 and its partner Loqs. Loss of these miRNA factors promoted association of pre-mir-451 with AGO1, which sliced them and permitted maturation into ∼ 23-26 nt products. The difference was due to the 3' modification of single-stranded species in AGO2 by Hen1 methyltransferase, whose depletion permitted 3' trimming of Ago-cleaved pre-miRNAs in AGO2. Surprisingly, Nibbler, a 3'-5' exoribonuclease that trims 'long' mature miRNAs in AGO1, antagonized miR-451 processing. We used an in vitro reconstitution assay to identify a soluble, EDTA-sensitive activity that resects sliced pre-miRNAs in AGO1 complexes. Finally, we use deep sequencing to show that depletion of dicer-1 increases the diversity of small RNAs in AGO1, including some candidate mir-451-like loci. Altogether, we document unexpected aspects of miRNA biogenesis and Ago sorting, and provide insights into maturation of Argonaute-cleaved miRNA substrates.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Células Cultivadas , Drosophila/metabolismo , Exorribonucleases/metabolismo , Metiltransferases/metabolismo , RNA Helicases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
12.
Genome Res ; 22(9): 1634-45, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22955976

RESUMO

Atypical miRNA substrates do not fit criteria often used to annotate canonical miRNAs, and can escape the notice of miRNA genefinders. Recent analyses expanded the catalogs of invertebrate splicing-derived miRNAs ("mirtrons"), but only a few tens of mammalian mirtrons have been recognized to date. We performed meta-analysis of 737 mouse and human small RNA data sets comprising 2.83 billion raw reads. Using strict and conservative criteria, we provide confident annotation for 237 mouse and 240 human splicing-derived miRNAs, the vast majority of which are novel genes. These comprise three classes of splicing-derived miRNAs in mammals: conventional mirtrons, 5'-tailed mirtrons, and 3'-tailed mirtrons. In addition, we segregated several hundred additional human and mouse loci with candidate (and often compelling) evidence. Most of these loci arose relatively recently in their respective lineages. Nevertheless, some members in each of the three mirtron classes are conserved, indicating their incorporation into beneficial regulatory networks. We also provide the first Northern validation for mammalian mirtrons, and demonstrate Dicer-dependent association of mature miRNAs from all three classes of mirtrons with Ago2. The recognition of hundreds of mammalian mirtrons provides a new foundation for understanding the scope and evolutionary dynamics of Dicer substrates in mammals.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Mamíferos/genética , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Alinhamento de Sequência
13.
PLoS Genet ; 8(2): e1002515, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22347817

RESUMO

miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.


Assuntos
Drosophila melanogaster/genética , MicroRNAs/genética , Mutação/genética , Neurogênese/genética , Junção Neuromuscular/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Locomoção/genética , Junção Neuromuscular/fisiologia , Fenótipo , Células Receptoras Sensoriais/patologia , Transdução de Sinais/genética , Sinapses/patologia , Transcriptoma/genética
14.
Genome Res ; 21(2): 286-300, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177960

RESUMO

Mirtrons are intronic hairpin substrates of the dicing machinery that generate functional microRNAs. In this study, we describe experimental assays that defined the essential requirements for entry of introns into the mirtron pathway. These data informed a bioinformatic screen that effectively identified functional mirtrons from the Drosophila melanogaster transcriptome. These included 17 known and six confident novel mirtrons among the top 51 candidates, and additional candidates had limited read evidence in available small RNA data. Our computational model also proved effective on Caenorhabditis elegans, for which the identification of 14 cloned mirtrons among the top 22 candidates more than tripled the number of validated mirtrons in this species. A few low-scoring introns generated mirtron-like read patterns from atypical RNA structures, but their paucity suggests that relatively few such loci were not captured by our model. Unexpectedly, we uncovered examples of clustered mirtrons in both fly and worm genomes, including a <8-kb region in C. elegans harboring eight distinct mirtrons. Altogether, we demonstrate that discovery of functional mirtrons, unlike canonical miRNAs, is amenable to computational methods independent of evolutionary constraint.


Assuntos
Caenorhabditis elegans/genética , Biologia Computacional , Drosophila melanogaster/genética , MicroRNAs/genética , Processamento Alternativo/genética , Animais , Sequência de Bases , Éxons , Íntrons , Sequências Repetidas Invertidas/genética , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/genética , Alinhamento de Sequência , Relação Estrutura-Atividade
15.
Genome Res ; 21(2): 203-15, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177969

RESUMO

Since the initial annotation of miRNAs from cloned short RNAs by the Ambros, Tuschl, and Bartel groups in 2001, more than a hundred studies have sought to identify additional miRNAs in various species. We report here a meta-analysis of short RNA data from Drosophila melanogaster, aggregating published libraries with 76 data sets that we generated for the modENCODE project. In total, we began with more than 1 billion raw reads from 187 libraries comprising diverse developmental stages, specific tissue- and cell-types, mutant conditions, and/or Argonaute immunoprecipitations. We elucidated several features of known miRNA loci, including multiple phased byproducts of cropping and dicing, abundant alternative 5' termini of certain miRNAs, frequent 3' untemplated additions, and potential editing events. We also identified 49 novel genomic locations of miRNA production, and 61 additional candidate loci with limited evidence for miRNA biogenesis. Although these loci broaden the Drosophila miRNA catalog, this work supports the notion that a restricted set of cellular transcripts is competent to be specifically processed by the Drosha/Dicer-1 pathway. Unexpectedly, we detected miRNA production from coding and untranslated regions of mRNAs and found the phenomenon of miRNA production from the antisense strand of known loci to be common. Altogether, this study lays a comprehensive foundation for the study of miRNA diversity and evolution in a complex animal model.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Animais , Sequência de Bases , Linhagem Celular , Biologia Computacional , Drosophila melanogaster/metabolismo , Feminino , Masculino , MicroRNAs/química , Edição de RNA/genética , RNA Antissenso/química , RNA Antissenso/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Alinhamento de Sequência
16.
RNA ; 18(2): 177-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190743

RESUMO

Nucleotide modifications to microRNAs or their precursors can influence their processing and/or activity. A challenge to their analysis is the lack of independent references for the termini generated by primary processing; typically, these are empirically assigned as the most abundant mapped reads. Mirtrons offer such an independent measure since these microRNA hairpins are defined by splicing. Consequently, mirtron-derived reads that deviate from splice sites reflect modification following primary processing. Analysis in Drosophila revealed multiple modification patterns, including select alterations of 5' termini, many 3' resection events, and unexpectedly abundant 3' untemplated monouridylation. Resections occur on mature AGO1-loaded species, whereas uridylation occurs on pre-miRNAs but is compatible with dicing and AGO1 loading. Strikingly, we found many mirtrons whose modified reads are more abundant than those produced by primary processing. In some cases, these abundant modified reads matched the genome owing to fortuitous uridines in downstream flanking exons, thus highlighting the value of an independent reference for the primary-processed sequence. We could further extend the principle of abundant and preferred uridylation of mirtrons, relative to canonical pre-miRNAs, to Caenorhabditis elegans, mouse, and human. Finally, we found that 3' resection occurs broadly across AGO1-loaded canonical miRNA and star species. Altogether, these findings substantially broaden the complexity of terminal modification pathways acting upon small regulatory RNAs.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sequência de Bases , Caenorhabditis elegans , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons/genética , Humanos , Camundongos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Splicing de RNA
17.
Sci Data ; 11(1): 617, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866801

RESUMO

In this study we examine the impact of cell confluency on gene expression. We focused on Argonaute (AGO) protein dynamics and associated gene and protein expression in HEK293, A375, and SHSY5Y cell lines. As a consequence of cell confluency, AGO2 protein translocates into the nucleus. Therefore, we generated transcriptomic data using RNA sequencing to compare gene expression in subconfluent versus confluent cells, which highlighted significant alterations in gene regulation patterns directly corresponding to changes in cell density. Our study also encompasses miRNA profiling data obtained through small RNA sequencing, revealing miRNA expressional changes dependent on cellular confluency, as well as cellular localization. Finally, we derived proteomic data from mass spectrometry analyses following AGO1-4 immunoprecipitation, providing a comprehensive view of AGO interactome in both nuclear and cytoplasmic compartments under varying confluency. These datasets offer a detailed exploration of the cellular and molecular dynamics, influenced by cell confluency, presenting a valuable resource for further research in cellular biology, particularly in understanding the basic mechanisms of cell density in cancer cells.


Assuntos
Proteínas Argonautas , Proteômica , Transcriptoma , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células HEK293 , Linhagem Celular Tumoral , Perfilação da Expressão Gênica
18.
Nat Commun ; 15(1): 4778, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862479

RESUMO

Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).


Assuntos
Encéfalo , Neurônios , Voo Espacial , Animais , Camundongos , Feminino , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Transcriptoma , Neurogênese , Análise de Célula Única , Camundongos Endogâmicos C57BL , Transmissão Sináptica , Ausência de Peso/efeitos adversos , Astrócitos/metabolismo , Estresse Oxidativo , Perfilação da Expressão Gênica , Multiômica
19.
Genome Res ; 20(3): 361-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20086243

RESUMO

Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1(+) and urg2(+), displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions.


Assuntos
Nitrogênio/fisiologia , Nucleossomos/fisiologia , Sequências Reguladoras de Ácido Nucleico , Schizosaccharomyces/genética , Cromatina/genética , Cromossomos Fúngicos/metabolismo , Genoma , Histonas/metabolismo , Fases de Leitura Aberta/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/metabolismo , Ativação Transcricional , Regulação para Cima
20.
Nucleic Acids Res ; 39(19): 8342-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742760

RESUMO

The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator-histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Complexo Mediador/genética , Mutação , Nucleossomos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA