Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Clin Invest ; 95(2): 803-10, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7860764

RESUMO

Compensatory hepatic regeneration after partial hepatectomy (PH) is dependent upon the extent of resection. This study analyzes the regulation of the AP-1 transcription factor c-Jun during hepatic regeneration. There is a progressive increase in c-jun mRNA levels after sham operation, one-third PH, and two-thirds PH. A concomitant increase in AP-1 binding activity is also observed. The c-Jun protein is a major constituent of the AP-1 complex in quiescent and early regenerating liver. The activity of c-Jun nuclear kinase (JNK), which phosphorylates the activation domain of the c-Jun protein, is markedly stimulated after one-third PH. JNK1 or an immunologically related kinase is a constituent of this stimulated JNK activity after PH. When primary cultures of adult rat hepatocytes are incubated with epidermal growth factor or transforming growth factor-alpha, AP-1 transcriptional activity is increased and the activation domain of the c-Jun protein is further potentiated. Phosphopeptide mapping of the endogenous c-Jun protein in proliferating cultured hepatocytes demonstrates phosphorylation of the c-Jun activation domain. Combining the results of these in vivo and culture studies, we conclude that the minimal stimulation of one-third PH activates JNK, which phosphorylates the c-Jun activation domain in hepatocytes, resulting in enhanced transcription of AP-1-dependent genes.


Assuntos
Expressão Gênica , Regeneração Hepática , Fígado/fisiologia , Proteínas Quinases/biossíntese , Proteínas Proto-Oncogênicas c-jun/biossíntese , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Colagenases/genética , Sequência Consenso , Ativação Enzimática , Indução Enzimática , Genes fos , Genes jun , Hepatectomia , Humanos , Cinética , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Ratos Sprague-Dawley , Albumina Sérica/biossíntese , Fatores de Tempo
2.
Mol Cell Biol ; 18(3): 1225-35, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9488437

RESUMO

The Mas oncogene encodes a novel G-protein-coupled receptor that was identified originally as a transforming protein when overexpressed in NIH 3T3 cells. The mechanism and signaling pathways that mediate Mas transformation have not been determined. We observed that the foci of transformed NIH 3T3 cells caused by Mas were similar to those caused by activated Rho and Rac proteins. Therefore, we determined if Mas signaling and transformation are mediated through activation of a specific Rho family protein. First, we observed that, like activated Rac1, Mas cooperated with activated Raf and caused synergistic transformation of NIH 3T3 cells. Second, both Mas- and Rac1-transformed NIH 3T3 cells retained actin stress fibers and showed enhanced membrane ruffling. Third, like Rac, Mas induced lamellipodium formation in porcine aortic endothelial cells. Fourth, Mas and Rac1 strongly activated the JNK and p38, but not ERK, mitogen-activated protein kinases. Fifth, Mas and Rac1 stimulated transcription from common DNA promoter elements: NF-kappaB, serum response factor (SRF), Jun/ATF-2, and the cyclin D1 promoter. Finally, Mas transformation and some of Mas signaling (SRF and cyclin D1 but not NF-kappaB activation) were blocked by dominant negative Rac1. Taken together, these observations suggest that Mas transformation is mediated in part by activation of Rac-dependent signaling pathways. Thus, Rho family proteins are common mediators of transformation by a diverse variety of oncogene proteins that include Ras, Dbl family, and G-protein-coupled oncogene proteins.


Assuntos
Transformação Celular Neoplásica , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas c-raf , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Células 3T3 , Actinas/fisiologia , Animais , Citoesqueleto/fisiologia , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Camundongos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/biossíntese , Receptores Acoplados a Proteínas G , Proteínas Oncogênicas de Retroviridae/biossíntese , Proteínas Oncogênicas de Retroviridae/genética , Proteínas rac de Ligação ao GTP , Proteínas ras/genética , Proteínas ras/metabolismo , Proteína rhoA de Ligação ao GTP
3.
Mol Cell Biol ; 17(3): 1324-35, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9032259

RESUMO

Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation.


Assuntos
Actinas/fisiologia , Transformação Celular Neoplásica , Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Quinases Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/fisiologia , Células 3T3 , Sequência de Aminoácidos , Animais , Células COS , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Ciclina D1 , Ciclinas/genética , Proteínas de Ligação a DNA/metabolismo , Endotélio Vascular , Ativação Enzimática , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudópodes , Proteínas Recombinantes de Fusão , Fator de Resposta Sérica , Transdução de Sinais/fisiologia , Suínos , Ativação Transcricional , eIF-2 Quinase , Proteínas rac de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
4.
Mol Cell Biol ; 17(3): 1346-53, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9032261

RESUMO

Vav is a member of a family of oncogene proteins that share an approximately 250-amino-acid motif called a Dbl homology domain. Paradoxically, Dbl itself and other proteins containing a Dbl domain catalyze GTP-GDP exchange for Rho family proteins, whereas Vav has been reported to catalyze GTP-GDP exchange for Ras proteins. We present Saccharomyces cerevisiae genetic data, in vitro biochemical data, and animal cell biological data indicating that Vav is a guanine nucleotide exchange factor for Rho-related proteins, but in similar genetic and biochemical experiments we fail to find evidence that Vav is a guanine nucleotide exchange factor for Ras. Further, we present data indicating that the Lck kinase activates the guanine nucleotide exchange factor and transforming activity of Vav.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Fibroblastos , Guanosina Difosfato/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-vav , Pseudópodes , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/fisiologia , Supressão Genética , Proteína cdc42 de Ligação ao GTP , Proteínas rac de Ligação ao GTP , Proteínas ras/metabolismo , Proteína rhoA de Ligação ao GTP
5.
Mol Cell Biol ; 16(7): 3923-33, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8668210

RESUMO

Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Transformação Celular Neoplásica , Genes ras , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3 , Animais , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Luciferases/metabolismo , MAP Quinase Quinase 4 , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf , Proteínas Recombinantes/metabolismo , Transfecção
6.
Mol Endocrinol ; 9(9): 1157-65, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7491108

RESUMO

Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) exert trophic effects on bowel mucosa. Each growth factor uses a distinct tyrosine kinase receptor but the receptors share some common signal transduction pathways. In other systems, regulation of cell growth involves interactions among multiple growth factors. We used IEC-6 cells, an epithelial cell line established from rat small intestine, to test whether EGF and IGF-I interact to regulate intestinal epithelial cell growth. EGF and IGF-I alone each stimulated DNA synthesis in IEC-6 cells. EGF was more potent than IGF-I, and effects of the two growth factors in combination were synergistic. Characterization of the IGF system [IGF-I, IGF-II, type 1 IGF receptor, and six IGF binding proteins (IGFBPs) 1-6] revealed that IEC-6 cells express high levels of type 1 IGF receptor mRNA, low or undetectable levels of IGF-I and IGF-II mRNAs, and mRNA for only one of the six IGFBPs, IGFBP2. IGF-I decreases expression of type 1 IGF receptor mRNA in IEC-6 cells and EGF attenuates this effect. EGF and IGF-I both reduce IGFBP2 mRNA expression, and inhibitory effects of EGF and IGF-I in combination are additive. EGF reduces IGFBP2 accumulated in conditioned medium relative to levels observed with IGF-I alone. These effects of EGF on type 1 IGF receptor expression and on levels of IGFBP2 mRNA and IGFBP2 in medium may contribute to synergistic mitogenic effects with IGF-I by promoting IGF-I responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Divisão Celular , Fator de Crescimento Epidérmico/farmacologia , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/farmacologia , Mucosa Intestinal/metabolismo , Animais , Linhagem Celular , Meios de Cultivo Condicionados , DNA/biossíntese , Sinergismo Farmacológico , Epitélio/metabolismo , Genes fos/genética , Genes jun/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , RNA Mensageiro/metabolismo , Ratos , Receptor IGF Tipo 1/genética , Transcrição Gênica
10.
J Biol Chem ; 272(3): 1677-81, 1997 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-8999845

RESUMO

Although recent evidence demonstrates that Ras causes transformation by activation of multiple downstream pathways, the specific role of non-Raf effector pathways is presently unknown. Although Ras causes activation of the Jun NH2-terminal kinases (JNKs) via a Raf-independent pathway, the contribution of JNK activation to Ras transformation and the effector that mediates JNK activation have not been established. We observed that a dominant negative mutant of SEK1/JNKK, an activator of JNKs, selectively inhibited oncogenic Ras activation of JNK and Ras transformation, but not Ras activation of the p42 mitogen-activated protein kinase. In contrast, overexpression of wild type SEK1 enhanced Ras activation of JNK and transforming activity. Thus, JNK activation promotes Ras transformation. Furthermore, a dominant negative mutant of p120 GAP (designated N-GAP), a candidate Ras effector, blocked Ras, but not Raf, transformation and blocked Ras, but not Rac, activation of JNK. Since N-GAP overexpression reduced the association of p190 Rac/Rho GAP with endogenous p120 GAP, N-GAP may form nonproductive complexes with components critical for p120 GAP function. In summary, p120 GAP may function as an effector for Ras activation of JNK and Ras transformation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Transformação Celular Neoplásica , Proteínas Quinases Ativadas por Mitógeno , Proteínas/metabolismo , Células 3T3 , Animais , Ativação Enzimática , Proteínas Ativadoras de GTPase , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase
11.
J Biol Chem ; 269(42): 26396-401, 1994 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-7929360

RESUMO

Tumor necrosis factor alpha (TNF alpha) has multiple biological functions including the prolonged activation of the collagenase and c-jun genes, which are regulated via their AP-1 binding sites. We show that incubating human fibroblasts with TNF alpha induces prolonged activation of JNK, the c-Jun kinase, which phosphorylates the transactivation domain of c-Jun. Furthermore, an immune complex kinase assay specifically demonstrates that TNF alpha stimulates the activity of JNK1, the recently described predominant form of JNK. TNF alpha also produces a small and transient increase in extracellular signal-regulated kinase (ERK) activity and no measured increase in Raf-1 kinase activity. On the other hand, epidermal growth factor causes a prolonged activation of Raf-1 kinase and ERK activity and a smaller, more transient activation of JNK, whereas the phorbol ester phorbol 12-myristate 13-acetate causes a small stimulation of Raf-1 kinase and a pronounced stimulation of ERK activity. The activation of JNK by TNF alpha does not correlate with Raf-1 or ERK activity. The kinetics of Raf-1, ERK, and JNK induction by epidermal growth factor, phorbol 12-myristate 13-acetate, or TNF alpha indicate distinct mechanisms of activation in human fibroblasts.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Células Cultivadas , DNA/metabolismo , Ativação Enzimática , Humanos , Proteína Quinase 3 Ativada por Mitógeno , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-raf , Acetato de Tetradecanoilforbol/farmacologia
12.
Gastroenterology ; 115(5): 1144-53, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9797369

RESUMO

BACKGROUND & AIMS: The expression of gastrin, as a tumor growth factor, is significantly increased in some colon cancers compared with the low levels found in normal mucosa. The aim of this study was to elucidate the transcriptional mechanisms of gastrin induction in colon cancer. METHODS: Gastrin messenger (mRNA) levels and K-ras genotype were determined in colon cancer cell lines and surgical specimens. Colon cancer cells were transfected with oncogenic ras expression vectors, and transcriptional activity was assayed with gastrin-luciferase reporter genes. RESULTS: Colon cancer cell lines and tissues with K-ras mutations all had significantly higher gastrin mRNA levels than those that were ras wild type. Treatment of several ras mutant cell lines with PD98059, an inhibitor of mitogen-activated protein kinase kinase, resulted in a decrease in endogenous gastrin mRNA levels. The effects of ras on gastrin expression appeared to be mediated through the gastrin promoter because transfection of oncogenic ras and activated raf expression vectors both induced gastrin-promoter, luciferase-reporter genes. The inductive effects of oncogenic ras could be blocked by the coexpression of dominant negative forms of raf and extracellular regulated kinase. CONCLUSIONS: Oncogenic ras induces gastrin gene expression through activation of the Raf-MEK-ERK signal transduction pathway.


Assuntos
Neoplasias do Colo/genética , Gastrinas/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes ras/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Genes Reporter/genética , Genótipo , Humanos , Luciferases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosforilação , Regiões Promotoras Genéticas/genética , Inibidores de Proteínas Quinases , RNA Mensageiro/metabolismo
13.
J Biol Chem ; 270(39): 22689-92, 1995 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-7559390

RESUMO

Tumor necrosis factor alpha (TNF alpha) activates the stress-activated protein kinases (SAPKs, also known as Jun nuclear kinases or JNKs) resulting in the stimulation of AP-1-dependent gene transcription and induces the translocation of NF kappa B to the nucleus resulting in the stimulation of NF kappa B-dependent gene transcription. A potential second messenger for these signaling pathways is ceramide, which is generated when TNF alpha activates sphingomyelinases. We show that treatment of HL-60 human promyelocytic cells with exogenous sphingomyelinase leads to rapid stimulation of JNK/SAPK activity, an effect not mimicked by treatment with phospholipase A2, C, or D. Further, JNK/SAPK activity is stimulated 2.7- and 2.8-fold, respectively, in cells exposed to C2-ceramide (5 microM) or TNF alpha (10 ng/ml). The prolonged stimulation of this kinase activity by C2-ceramide is similar to that previously reported for TNF alpha. In contrast, the related mitogen-activated protein kinases ERK1 and ERK2 are weakly stimulated following TNF alpha treatment (1.5-fold) and are inhibited by C2-ceramide treatment. TNF alpha also potently stimulates NF-kappa B DNA binding activity and transcriptional activity, but these effects are not mimicked by addition of C2-ceramide or sphingomyelinase to intact cells. Furthermore, TNF alpha, sphingomyelinase, and C2-ceramide induce c-jun, a gene that is stimulated by the ATF-2 and c-Jun transcription factors. These data suggest that ceramide may act as a second messenger for a subset of TNF alpha's biochemical and biological effects.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Ceramidas/fisiologia , Proteínas Quinases Ativadas por Mitógeno , Esfingomielina Fosfodiesterase/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Genes jun , Células HL-60 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteínas Proto-Oncogênicas c-jun/biossíntese , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Proteínas Recombinantes/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Fisiológico
14.
Mol Cell ; 8(1): 115-27, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11511365

RESUMO

Adhesion to fibronectin through the alpha5beta1 integrin enables endothelial cells to proliferate in response to growth factors, whereas adhesion to laminin through alpha2beta1 results in growth arrest under the same conditions. On laminin, endothelial cells fail to translate Cyclin D1 mRNA and activate CDK4 and CDK6. Activated Rac, but not MEK1, PI-3K, or Akt, rescues biosynthesis of cyclin D1 and progression through the G(1) phase. Conversely, dominant negative Rac prevents these events on fibronectin. Mitogens promote activation of Rac on fibronectin but not laminin. This process is mediated by SOS and PI-3K and requires coordinate upstream signals through Shc and FAK. These results indicate that Rac is a crucial mediator of the integrin-specific control of cell cycle in endothelial cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Quinases relacionadas a CDC2 e CDC28 , Endotélio Vascular/citologia , Fase G1/fisiologia , Integrinas/metabolismo , Proteínas Proto-Oncogênicas , Receptores de Fibronectina/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Northern Blotting , Caveolina 1 , Caveolinas/metabolismo , Adesão Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Adesões Focais/metabolismo , Humanos , Immunoblotting , Insulina/farmacologia , Integrinas/genética , Laminina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Receptores de Colágeno , Receptores de Fibronectina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína SOS1/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
15.
J Biol Chem ; 272(39): 24113-6, 1997 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-9305854

RESUMO

Ras proteins function in stimulating cell proliferation and differentiation through the activation of Raf-dependent and Raf-independent signal transduction pathways and the subsequent activation of specific transcription factors. The transcription factor NF-kappaB has been widely studied as a regulator of genes involved in immune and inflammatory responses. A variety of stimuli activate NF-kappaB through the induced phosphorylation and degradation of the inhibitor IkappaB followed by nuclear translocation of NF-kappaB. We show here that oncogenic forms of Ha-Ras activate NF-kappaB, not through induced nuclear translocation, but rather through the activation of the transcriptional function of the NF-kappaB RelA/p65 subunit. Importantly, RelA/p65 -/- cells are inefficient in the activation of kappaB-dependent gene expression in response to oncogenic Ras expression. Furthermore, IkappaBalpha expression blocks focus formation in NIH3T3 cells induced by oncogenic Ras. These results demonstrate that NF-kappaB is a critical downstream mediator of Ha-Ras signaling and oncogenic potential.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Transdução de Sinais , Transcrição Gênica , Células 3T3 , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf , Fator de Transcrição RelA
16.
Nature ; 390(6660): 632-6, 1997 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-9403696

RESUMO

Transformation of mammary epithelial cells into invasive carcinoma results in alterations in their integrin-mediated responses to the extracellular matrix, including a loss of normal epithelial polarization and differentiation, and a switch to a more motile, invasive phenotype. Changes in the actin cytoskeleton associated with this switch suggest that the small GTPases Cdc42 and Rac, which regulate actin organization, might modulate motility and invasion. However, the role of Cdc42 and Rac1 in epithelial cells, especially with respect to integrin-mediated events, has not been well characterized. Here we show that activation of Cdc42 and Rac1 disrupts the normal polarization of mammary epithelial cells in a collagenous matrix, and promotes motility and invasion. This motility does not require the activation of PAK, JNK, p70 S6 kinase, or Rho, but instead requires phosphatidylinositol-3-OH kinase (PI(3)K). Further, direct PI(3)K activation is sufficient to disrupt epithelial polarization and induce cell motility and invasion. PI(3)K inhibition also disrupts actin structures, suggesting that activation of PI(3)K by Cdc42 and Rac1 alters actin organization, leading to increased motility and invasiveness.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Movimento Celular , Transformação Celular Neoplásica , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Actinas/metabolismo , Mama/citologia , Linhagem Celular , Epitélio , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Transfecção , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP , Proteínas rac de Ligação ao GTP
17.
Am J Physiol ; 264(1 Pt 1): G95-103, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8430810

RESUMO

During an acute phase response following inflammatory stimuli, specific changes occur in the synthesis and secretion of many hepatic proteins. Because the expression of differentiated function requires the coordinated regulation of many genes, we investigated the activity of general and tissue-specific transcription factors using a rat liver model of the acute phase response induced by Freund's adjuvant. Nuclear extracts and RNAs were prepared throughout a 48-h posttreatment period. Mobility shift assays revealed increased binding activity by nuclear factor-kappa B, interleukin-6 (IL-6) responsive element binding protein, and activating protein 1 (AP-1). Two AP-1 complexes were induced during the acute phase response, and correlation between their presence and transcription activity was demonstrated by transfection studies. Elevated binding activity of AP-1 also correlated with elevated levels of c-jun, junD, junB, and c-fos mRNAs. Western blots showed elevated hepatic levels of c-Jun but not c-Fos proteins during the acute phase response. In addition, IL-6, tumor necrosis factor-alpha, and IL-1 beta, cytokine regulators of the acute phase response, stimulated expression of an AP-1 responsive reporter gene introduced by DNA-mediated transfection into adult rat hepatocytes in primary culture. These findings demonstrate the complexity of AP-1 hepatic transcription factor responses to humoral regulators with direct hepatocellular effects.


Assuntos
Reação de Fase Aguda/metabolismo , Hepatopatias/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Sequência de Bases , Expressão Gênica , Masculino , Dados de Sequência Molecular , NF-kappa B/metabolismo , Sondas de Oligonucleotídeos/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Transcrição Gênica , Células Tumorais Cultivadas
18.
J Biol Chem ; 269(30): 19203-6, 1994 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-8034681

RESUMO

Recently developed CAAX peptidomimetic compounds have been shown to be potent and specific inhibitors of farnesyl protein transferase activity and to block the growth of Ras-transformed cells. However, whether this growth inhibitory action is specifically a consequence of blocking oncogenic Ras signaling has not been determined. To address this question, we have utilized mutants of the normally farnesylated oncogenic Ras protein (Ras-F) that are modified by alternative lipids, a geranylgeranyl isoprenoid (Ras-GG) or the fatty acid myristate (Myr-Ras), to determine the specificity of the CAAX peptidomimetic compound, B581. Like Ras-F, both Ras-GG and Myr-Ras are membrane-associated and transforming. Unexpectedly, NIH 3T3 cells transformed by each of the three Ras mutants underwent morphological alteration to a less transformed, but not normal, morphology. However, B581 inhibited the ability of only Ras-F-transformed cells, but not Ras-GG- or Myr-Ras- (or Raf-) transformed cells, to grow in soft agar. Furthermore, although all three lipid-modified versions of Ras stimulated mitogen-activated protein kinase activation, and both Jun and Elk-1 transcriptional activity, B581 inhibited only farnesylated Ras activation of these three downstream components of Ras signaling. Therefore, B581 prevents the growth of Ras-transformed cells by specifically antagonizing Ras-mediated signaling.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Proteínas de Ligação a DNA , Oligopeptídeos/farmacologia , Proteína Oncogênica p21(ras)/metabolismo , Prenilação de Proteína , Proteínas Proto-Oncogênicas , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Células 3T3 , Animais , Diterpenos/metabolismo , Farneseno Álcool/metabolismo , Camundongos , Ácido Mirístico , Ácidos Mirísticos/metabolismo , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Oncogênicas de Retroviridae/genética , Transcrição Gênica , Proteínas Elk-1 do Domínio ets
19.
Proc Natl Acad Sci U S A ; 91(13): 6030-4, 1994 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-8016110

RESUMO

c-Jun transcriptional activity is augmented by expression of oncogenic Ras and Raf proteins. This study demonstrates a direct correlation between Ras transforming activity and c-Jun activation, supporting an important role for c-Jun in transformation by Ras. Since we observed that Ras activated c-Jun transcriptional activity by increasing phosphorylation of the c-Jun activation domain at residues Ser-63/Ser-73 and that oncogenic Ras proteins activated extracellular signal-regulated protein kinases (ERK1 and ERK2) (also known as mitogen-activated protein kinases), we evaluated the possibility that ERKs were directly responsible for c-Jun activation. Coexpression of wild-type ERKs with oncogenic Ras proteins potentiated, while kinase-defective ERKs inhibited, Ras-induced transcriptional activation from the Ras-responsive element (Ets-1/AP-1) present in the NVL-3 enhancer and the serum-response element in the c-fos promoter. In contrast, coexpression of either wild-type or kinase-defective ERKs inhibited Ras and Raf activation of c-Jun transcriptional activity. Thus, although activation of both ERK and c-Jun are downstream consequences of activation of the Ras signal transduction pathway, our results suggest that Ras-induced c-Jun phosphorylation and transcriptional activation are not a direct consequence of ERK1 and ERK2 activation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Genes fos , Proteínas Quinases Ativadas por Mitógeno , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células 3T3 , Animais , Linhagem Celular Transformada , Genes ras , Glutationa Transferase/biossíntese , Glutationa Transferase/metabolismo , Humanos , Luciferases/biossíntese , Luciferases/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/biossíntese , Transdução de Sinais , Transfecção
20.
EMBO J ; 16(9): 2365-75, 1997 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9171350

RESUMO

The signaling pathways linking integrins to nuclear events are incompletely understood. We have examined intracellular signaling by the alpha6beta4 integrin, a laminin receptor expressed in basal keratinocytes and other cells. Ligation of alpha6beta4 in primary human keratinocytes caused tyrosine phosphorylation of Shc, recruitment of Grb2, activation of Ras and stimulation of the MAP kinases Erk and Jnk. In contrast, ligation of the laminin- and collagen-binding integrins alpha3beta1 and alpha2beta1 did not cause these events. While the stimulation of Erk by alpha6beta4 was suppressed by dominant-negative Shc, Ras and RhoA, the activation of Jnk was inhibited by dominant-negative Ras and Rac1 and by the phosphoinositide 3-kinase inhibitor Wortmannin. Adhesion mediated by alpha6beta4 induced transcription from the Fos serum response element and promoted cell cycle progression in response to mitogens. In contrast, alpha3beta1- and alpha2beta1-dependent adhesion did not induce these events. These findings suggest that the coupling of alpha6beta4 integrin to the control of cell cycle progression mediated by Shc regulates the proliferation of basal keratinocytes and possibly other cells which are in contact with the basement membrane in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Antígenos de Neoplasias/metabolismo , Antígenos de Superfície/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Integrinas/metabolismo , Queratinócitos/citologia , MAP Quinase Quinase Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3 , Animais , Antígenos de Neoplasias/genética , Antígenos de Superfície/genética , Biomarcadores Tumorais , Adesão Celular , Ciclo Celular , Divisão Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Epitopos/genética , Epitopos/metabolismo , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2 , Genes Precoces , Células HeLa , Humanos , Integrina alfa6beta4 , Integrinas/genética , Laminina/farmacologia , Camundongos , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fator de Resposta Sérica , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA