RESUMO
Systemic physiological dynamics, such as heart rate variability (HRV) and respiration volume per time (RVT), are known to account for significant variance in the blood oxygen level dependent (BOLD) signal of resting-state functional magnetic resonance imaging (rsfMRI). However, synchrony between these cardiorespiratory changes and the BOLD signal could be due to neuronal (i.e., autonomic activity inducing changes in heart rate and respiration) or vascular (i.e., cardiorespiratory activity facilitating hemodynamic changes and thus the BOLD signal) effects and the contributions of these effects may differ spatially, temporally, and spectrally. In this study, we characterize these brain-body dynamics using a wavelet analysis in rapidly sampled rsfMRI data with simultaneous pulse oximetry and respiratory monitoring of the Human Connectome Project. Our time-frequency analysis across resting-state networks (RSNs) revealed differences in the coherence of the BOLD signal and heartbeat interval (HBI)/RVT dynamics across frequencies, with unique profiles per network. Somatomotor (SMN), visual (VN), and salience (VAN) networks demonstrated the greatest synchrony with both systemic physiological signals when compared to other networks; however, significant coherence was observed in all RSNs regardless of direct autonomic involvement. Our phase analysis revealed distinct frequency profiles of percentage of time with significant coherence between BOLD and systemic physiological signals for different phase offsets across RSNs, suggesting that the phase offset and temporal order of signals varies by frequency. Lastly, our analysis of temporal variability of coherence provides insight on potential influence of autonomic state on brain-body communication. Overall, the novel wavelet analysis enables an efficient characterization of the dynamic relationship between cardiorespiratory activity and the BOLD signal in spatial, temporal, and spectral dimensions to inform our understanding of autonomic states and improve our interpretation of the BOLD signal.
Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Saturação de Oxigênio , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , RespiraçãoRESUMO
Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.
Assuntos
Oxirredutases do Álcool/genética , Carcinoma/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética , Neoplasias Gástricas/genética , Adolescente , Idade de Início , Carcinoma/patologia , Humanos , Masculino , Neoplasias Gástricas/patologiaRESUMO
Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA-Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%-86% when controlling for population and allele-by-population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis- and trans-regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.
Assuntos
Genética Populacional , Helianthus , Repetições de Microssatélites , Alelos , Expressão Gênica , Helianthus/genética , Kansas , OklahomaRESUMO
Conditionals and conditional reasoning have been a long-standing focus of research across a number of disciplines, ranging from psychology through linguistics to philosophy. But almost no work has concerned itself with the question of how hearing or reading a conditional changes our beliefs. Given that we acquire much-perhaps most-of what we believe through the testimony of others, the simple matter of acquiring conditionals via others' assertion of a conditional seems integral to any full understanding of the conditional and conditional reasoning. In this paper we detail a number of basic intuitions about how beliefs might change in response to a conditional being uttered, and show how these are backed by behavioral data. In the remainder of the paper, we then show how these deceptively simple phenomena pose a fundamental challenge to present theoretical accounts of the conditional and conditional reasoning - a challenge which no account presently fully meets.
Assuntos
Tomada de Decisões/fisiologia , Lógica , Modelos Estatísticos , Teoria da Probabilidade , Teorema de Bayes , Compreensão , HumanosRESUMO
The mechanisms by which natural populations generate adaptive genetic variation are not well understood. Some studies propose that microsatellites can function as drivers of adaptive variation. Here, we tested a potentially adaptive role for transcribed microsatellites with natural populations of the common sunflower (Helianthus annuus L.) by assessing the enrichment of microsatellites in genes that show expression divergence across latitudes. Seeds collected from six populations at two distinct latitudes in Kansas and Oklahoma were planted and grown in a common garden. Morphological measurements from the common garden demonstrated that phenotypic variation among populations is largely explained by underlying genetic variation. An RNA-Seq experiment was conducted with 96 of the individuals grown in the common garden and differentially expressed (DE) transcripts between the two latitudes were identified. A total number of 825 DE transcripts were identified. DE transcripts and nondifferentially expressed (NDE) transcripts were then scanned for microsatellites. The abundance of different motif lengths and types in both groups were estimated. Our results indicate that DE transcripts are significantly enriched with mononucleotide repeats and significantly depauperate in trinucleotide repeats. Further, the standardized mononucleotide repeat motif A and dinucleotide repeat motif AG were significantly enriched within DE transcripts while motif types, C, AT, ACC and AAC in DE transcripts, are significantly differentiated in microsatellite tract length between the two latitudes. The tract length differentiation at specific microsatellite motif types across latitudes and their enrichment within DE transcripts indicate a potential functional role for transcribed microsatellites in gene expression divergence in sunflower.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Repetições de Microssatélites/fisiologia , Adaptação Biológica , Genes de Plantas , Variação Genética , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Kansas , Oklahoma , Fenótipo , Análise de Sequência de RNARESUMO
Determination of the safety of agents prior to release is one of the most important research goals in biological control. In addition to concerns for the safety of non-target plants, determination of the potential toxic properties of new agents needs to be assessed. Numerous phytophagous insects are defended by chemicals against the attack of natural enemies. Some of these defensive compounds could pose an environmental risk if an agent is released. Here, larval populations of two pergid sawflies, Heteroperreyia hubrichi and H. jorgenseni, were analyzed by LC-MS/MS to investigate whether they contain alleged toxic peptides. The first species is a potential candidate for biological control of the invasive weed Brazilian peppertree in Florida and Hawaii. The chemical analyses revealed the presence of the peptides pergidin (Perg), 4-valinepergidin (VPerg), dephosphorylated pergidin (dpPerg), lophyrotomin (LGln and LGlu). The effect of sawfly population for each species was significantly influencing peptide concentration. All peptides occurred at lower concentrations compared with purportedly toxic species of this sawfly family. However, the concentrations of the peptides are of concern for the welfare of wildlife and livestock that would be exposed to these species. These results demonstrate that release of this biological control agent in the invaded range may pose an environmental threat.
Assuntos
Anacardiaceae/metabolismo , Agentes de Controle Biológico/análise , Peptídeos/análise , Animais , Agentes de Controle Biológico/farmacologia , Cromatografia Líquida de Alta Pressão , Himenópteros/crescimento & desenvolvimento , Himenópteros/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Oligopeptídeos/análise , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Espectrometria de Massas em TandemRESUMO
PREMISE OF THE STUDY: Taxa inhabiting the California Channel Islands exhibit variation in their degree of isolation, but few studies have considered patterns across the entire archipelago. We studied phylogeography of insular Acmispon argophyllus and A. dendroideus to determine whether infraspecific taxa are genetically divergent and to elucidate patterns of diversification across these islands. METHODS: DNA sequences were collected from nuclear (ADH) and plastid genomes (rpL16, ndhA, psbD-trnT) from >450 samples on the Channel Islands and California. We estimated population genetic diversity and structure, phylogenetic patterns among populations, and migration rates, and tested for population growth. KEY RESULTS: Populations of northern island A. argophyllus var. niveus are genetically distinct from conspecific populations on southern islands. On the southern islands, A. argophyllus var. argenteus populations on Santa Catalina are phylogenetically distinct from populations of var. argenteus and var. adsurgens on the other southern islands. For A. dendroideus, we found the varieties to be monophyletic. Populations of A. dendroideus var. traskiae on San Clemente are genetically differentiated from other conspecific populations, whereas populations on the northern islands and Santa Catalina show varying degrees of gene flow. Evidence of population growth was found in both species. CONCLUSIONS: Oceanic barriers between islands have had a strong influence on population genetic structure in both Acmispon species, although the species have differing phylogeographic patterns. This study provides a contrasting pattern of dispersal on a near island system that does not follow a strict stepping-stone model, commonly found on isolated island systems.
Assuntos
Fabaceae/genética , Genética Populacional , Filogenia , California , Fabaceae/classificação , Variação Genética , Ilhas , FilogeografiaRESUMO
Background: Identifying germline predisposition in CNS malignancies is of increasing clinical importance, as it contributes to diagnosis and prognosis, and determines aspects of treatment. The inclusion of germline testing has historically been limited due to challenges surrounding access to genetic counseling, complexity in acquiring a germline comparator specimen, concerns about the impact of findings, or cost considerations. These limitations were further defined by the breadth and scope of clinical testing to precisely identify complex variants as well as concerns regarding the clinical interpretation of variants including those of uncertain significance. Methods: In the course of conducting an IRB-approved protocol that performed genomic, transcriptomic and methylation-based characterization of pediatric CNS malignancies, we cataloged germline predisposition to cancer based on paired exome capture sequencing, coupled with computational analyses to identify variants in known cancer predisposition genes and interpret them relative to established clinical guidelines. Results: In certain cases, these findings refined diagnosis or prognosis or provided important information for treatment planning. Conclusions: We outline our aggregate findings on cancer predisposition within this cohort which identified 16% of individuals (27 of 168) harboring a variant predicting cancer susceptibility and contextualize the impact of these results in terms of treatment-related aspects of precision oncology.
RESUMO
Introduction: In the setting of pediatric and adolescent young adult cancer, increased access to genomic profiling has enhanced the detection of genetic variation associated with cancer predisposition, including germline syndromic conditions. Noonan syndrome (NS) is associated with the germline RAS pathway activating alterations and increased risk of cancer. Herein, we describe our comprehensive molecular profiling approach, the association of NS with glioma and glioneuronal tumors, and the clinical and histopathologic characteristics associated with the disease. Methods: Within an institutional pediatric cancer cohort (n = 314), molecular profiling comprised of paired somatic disease-germline comparator exome analysis, RNA sequencing, and tumor classification by DNA methylation analysis was performed. Results: Through the implementation of paired analysis, this study identified 4 of 314 (1.3%) individuals who harbored a germline PTPN11 variant associated with NS, of which 3 individuals were diagnosed with a glioma or glioneuronal tumor. Furthermore, we extend this study through collaboration with a peer institution to identify two additional individuals with NS and a glioma or glioneuronal tumor. Notably, in three of five (60%) individuals, paired genomic profiling led to a previously unrecognized diagnosis of Noonan syndrome despite an average age of cancer diagnosis of 16.8 years. The study of the disease-involved tissue identified signaling pathway dysregulation through somatic alteration of genes involved in cellular proliferation, survival, and differentiation. Discussion: Comparative pathologic findings are presented to enable an in-depth examination of disease characteristics. This comprehensive analysis highlights the association of gliomas and glioneuronal tumors with RASopathies and the potential therapeutic challenges and importantly demonstrates the utility of genomic profiling for the identification of germline cancer predisposition.
RESUMO
Genomic profiles and prognostic biomarkers in patients with acute myeloid leukemia (AML) from ancestry-diverse populations are underexplored. We analyzed the exomes and transcriptomes of 100 patients with AML with genomically confirmed African ancestry (Black; Alliance) and compared their somatic mutation frequencies with those of 323 self-reported white patients with AML, 55% of whom had genomically confirmed European ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations recurrent in Black patients, including a hitherto unreported PHIP alteration detected in 7% of patients, were found in one white patient or not detected. Black patients with myelodysplasia-related AML were younger than white patients suggesting intrinsic and/or extrinsic dysplasia-causing stressors. On multivariable analyses of Black patients, NPM1 and NRAS mutations were associated with inferior disease-free and IDH1 and IDH2 mutations with reduced overall survival. Inflammatory profiles, cell type distributions and transcriptional profiles differed between Black and white patients with NPM1 mutations. Incorporation of ancestry-specific risk markers into the 2022 European LeukemiaNet genetic risk stratification changed risk group assignment for one-third of Black patients and improved their outcome prediction.
RESUMO
To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.
Assuntos
Besouros/fisiologia , Euphorbiaceae/metabolismo , Herbivoria , Animais , Carbono/metabolismo , China , Besouros/crescimento & desenvolvimento , Euphorbiaceae/crescimento & desenvolvimento , Comportamento Alimentar , Flavonoides/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Taninos/metabolismoRESUMO
BACKGROUND AND AIMS: Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage. METHODS: Constitutive extrafloral nectar (EFN) production of native and invasive populations of juvenile tallow tree (Triadica sebifera) were compared, and leaf clipping, and damage by a native specialist (Noctuid) and two native generalist caterpillars (Noctuid and Limacodid) were used to examine inducible EFN production. KEY RESULTS: Plants from introduced populations had more leaves producing constitutive EFN than did native populations, but the content of soluble solids of EFN did not differ. Herbivores induced EFN production more than simulated herbivory. The specialist (Noctuid) induced more EFN than either generalist for native populations. The content of soluble solids in EFN was higher (2·1 times), with the specialist vs. the generalists causing the stronger response for native populations, but the specialist response was always comparable with the generalist responses for invasive populations. CONCLUSIONS: These results suggest that constitutive and induced indirect defences are retained in juvenile plants of invasive populations even during plant establishment, perhaps due to generalist herbivory in the introduced range. However, responses specific to a specialist herbivore may be reduced in the introduced range where specialists are absent. This decreased defence may benefit specialist insects that are introduced for classical biological control of invasive plants.
Assuntos
Euphorbiaceae/fisiologia , Herbivoria , Espécies Introduzidas , Mariposas/fisiologia , Animais , Néctar de PlantasRESUMO
Schinus terebinthifolius (Anacardiaceae), Brazilian peppertree (BP), is a major environmental weed in many tropical and subtropical areas of the globe, including Florida, Hawai'i, and Australia. This plant has been the target of a classical biocontrol project in the United States involving pathogens collected in Brazil for several years. A fungus was found in the Brazilian state of Espírito Santo causing leaf spots and severe foliage blight on BP. Examination of the morphology and internal transcribed spacer sequence analysis confirmed that the fungus is a strain of Corynespora cassiicola. Preliminary host-range tests involving 24 species, including 11 species in the family Anacardiaceae, were conducted with the fungus, and specificity toward BP was confirmed. Plants of Brazilian pepper tree from populations in Florida and Hawai'i included in the tests became severely diseased. Therefore, the recognition of a new forma specialis-Corynespora cassiicola f. sp. schinii-is proposed. The specificity of this forma specialis and the severity of the disease it caused in the field and under controlled conditions indicate that it has the potential for use as a biocontrol agent for BP in areas where it is an exotic invasive species.
RESUMO
Magnetic resonance fingerprinting (MRF) represents a potential paradigm shift in MR image acquisition, reconstruction, and analysis using computational biophysical modelling in parallel to image acquisition. Its flexibility allows for examination of cerebrovascular metrics through MR vascular fingerprinting (MRvF), and this has been extended even further to produce quantitative cerebral blood volume (CBV), microvascular vessel radius, and tissue oxygen saturation (SO2) maps of the whole brain simultaneously every few seconds. This allows for observation of rapid physiological changes like cerebrovascular reactivity (CVR), which is the ability of vessels to dilate in response to a vasoactive stimulus. Here we demonstrated a novel protocol in which a rapid, spin- and gradient-echo pulse sequence allowed for dynamic, and simultaneous acquisition of MRvF and blood oxygen level dependent (BOLD) measures. By combining this with a tailored hypercapnic (5% CO2) breathing paradigm we were able to show how these quantitative CBV, radius, and SO2 parameters changed in response to a stimulus and directly compare those to a colocalized, traditionally used BOLD CVR. We also compared these measures to another traditionally utilized technique in cerebral blood flow CVR from an arterial spin labelling sequence. These imaging, processing, and analysis techniques will allow for further investigation into the magnitude and rate of CVR based on BOLD and MRvF-based metrics and enable investigations to better understand vascular function in healthy aging and cerebrovascular diseases.Clinical Relevance- The development of dynamic magnetic resonance vascular fingerprinting has the potential to enable rapid, quantitative, and multiparametric functional imaging biomarkers of cerebrovascular diseases like vascular cognitive impairment, dementia, and Alzheimer's disease.
Assuntos
Transtornos Cerebrovasculares , Hipercapnia , Humanos , Hipercapnia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância MagnéticaRESUMO
Introduction: We aimed to demonstrate non-invasive measurements of regional oxygen extraction fraction (OEF) from quantitative BOLD MRI modeling at baseline and after pharmacological vasodilation. We hypothesized that OEF decreases in response to vasodilation with acetazolamide (ACZ) in healthy conditions, reflecting compensation in regions with increased cerebral blood flow (CBF), while cerebral metabolic rate of oxygen (CMRO2) remained unchanged. We also aimed to assess the relationship between OEF and perfusion in the default mode network (DMN) regions that have shown associations with vascular risk factors and cerebrovascular reactivity in different neurological conditions. Material and methods: Eight healthy subjects (47 ± 13 years, 6 female) were scanned on a 3 T scanner with a 32-channel head coil before and after administration of 15 mg/kg ACZ as a pharmacological vasodilator. The MR imaging acquisition protocols included: 1) A Gradient Echo Slice Excitation Profile Imaging Asymmetric Spin Echo scan to quantify OEF, deoxygenated blood volume, and reversible transverse relaxation rate (R2 ') and 2) a multi-post labeling delay arterial spin labeling scan to measure CBF. To assess changes in each parameter due to vasodilation, two-way t-tests were performed for all pairs (baseline versus vasodilation) in the DMN brain regions with Bonferroni correction for multiple comparisons. The relationships between CBF versus OEF and CBF versus R2' were analyzed and compared across DMN regions using linear, mixed-effect models. Results: During vasodilation, CBF significantly increased in the medial frontal cortex (P=0.004), posterior cingulate gyrus (pCG) (P=0.004), precuneus cortex (PCun) (P=0.004), and occipital pole (P=0.001). Concurrently, a significant decrease in OEF was observed only in the pCG (8.8%, P=0.003) and PCun (8.7%,P=0.001). CMRO2 showed a trend of increased values after vasodilation, but these differences were not significant after correction for multiple comparisons. Although R2' showed a slightly decreasing trend, no statistically significant changes were found in any regions in response to ACZ. The CBF response to ACZ exhibited a stronger negative correlation with OEF (ß=-0.104±0.027; t=-3.852,P<0.001), than with R2' (ß=-0.016±0.006; t=-2.692,P=0.008). Conclusion: Quantitative BOLD modeling can reliably measure OEF across multiple physiological conditions and captures vascular changes with higher sensitivity than R2' values. The inverse correlation between OEF and CBF across regions in DMN, suggests that these two measurements, in response to ACZ vasodilation, are reliable indicators of tissue health in this healthy cohort.
RESUMO
Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.
RESUMO
The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.
Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Feminino , Animais , Humanos , Multiômica , Mama , Neoplasias de Mama Triplo Negativas/genética , Metilação de DNA/genética , Neoplasias Mamárias Animais/genética , Epigênese Genética/genética , Microambiente Tumoral/genéticaRESUMO
PREMISE OF THE STUDY: To estimate genetic structure, chloroplast loci containing length-variable regions were developed for two legumes, Acmispon argophyllus and A. dendroideus. ⢠METHODS AND RESULTS: Primers for 14 chloroplast loci containing repeat regions were developed from the chloroplast genome sequence of the legume Lotus japonicus and tested in Acmispon. Nine loci exhibited polymorphism in Acmispon, with up to six alleles per locus. Gene diversity ranged from 0 to 0.775 in A. argophyllus and 0.142 to 0.766 in A. dendroideus. The primers also amplified in other Acmispon species. Sequencing of the fragments revealed discordance between fragment sizes and underlying sequence for three loci containing complex repeat regions. ⢠CONCLUSIONS: Although genotypes were easily generated and sized, sequencing may be more informative of genetic variation in loci with complex repeat regions. These loci exhibit substantial variation and should be useful for understanding genetic structure associated with seed dispersal in Acmispon.
Assuntos
Cloroplastos/genética , Fabaceae/genética , Genética Populacional , Alelos , Colorado , Loci Gênicos/genética , Marcadores Genéticos , Polimorfismo GenéticoRESUMO
BACKGROUND: Vasculitis may cause inflammation in any single or group of blood vessels. Traditionally, giant cell arteritis involves the extracranial branches of the carotid, and Takayasu arteritis affects the aorta and its major branches. These diseases are quite rare, but have the potential to be fatal. OBJECTIVES: We describe the spectrum of overlap between these two historically distinct diseases, and use a case of a man with arteritis involving his carotid and vertebral vessels, aorta, and coronary arteries to illustrate this. We posit that large-vessel vasculitis should be considered in the differential for young and middle-aged patients presenting with multiple vascular events. CASE REPORT: Over a 2-month period, a 46-year-old man presented on four separate occasions to the Emergency Department. Each time, he was diagnosed with a vascular event. His first two visits were for myocardial infarction and unstable angina, his third visit was for a cerebrovascular event, and his fourth visit was for aortitis. He was not diagnosed with the underlying vasculitic process until his last visit. He ultimately succumbed to non-aneurysmal aortic rupture from his aortitis. CONCLUSIONS: In middle-aged persons with multiple vascular events, an underlying inflammatory process should be considered. These diseases are rare, but they are treatable; and missed diagnoses can be catastrophic.
Assuntos
Aortite/etiologia , Arterite de Células Gigantes/complicações , Infarto do Miocárdio/etiologia , Acidente Vascular Cerebral/etiologia , Arterite de Takayasu/complicações , Ruptura Aórtica/etiologia , Evolução Fatal , Arterite de Células Gigantes/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Arterite de Takayasu/diagnósticoRESUMO
Rhabdoid tumors (RTs) of the brain (atypical teratoid/rhabdoid tumor; AT/RT) and extracranial sites (most often the kidney; RTK) are malignant tumors predominantly occurring in children, frequently those with SMARCB1 germline alterations. Here we present data from seven RTs from three pediatric patients who all had multi-organ involvement. The tumors were analyzed using a multimodal molecular approach, which included exome sequencing of tumor and germline comparator and RNA sequencing and DNA array-based methylation profiling of tumors. SMARCB1 germline alterations were identified in all patients and in all tumors. We observed a second hit in SMARCB1 via chr22 loss of heterozygosity. By methylation profiling, all tumors were classified as rhabdoid tumors with a corresponding subclassification within the MYC, TYR, or SHH AT/RT subgroups. Using RNA-seq gene expression clustering, we recapitulated the classification of known AT/RT subgroups. Synchronous brain and kidney tumors from the same patient showed different patterns of either copy number variants, single-nucleotide variants, and/or genome-wide DNA methylation, suggestive of non-clonal origin. Furthermore, we demonstrated that a lung and abdominal metastasis from two patients shared overlapping molecular features with the patient's primary kidney tumor, indicating the likely origin of the metastasis. In addition to the SMARCB1 events, we identified other whole-chromosome events and single-nucleotide variants in tumors, but none were found to be prognostic, diagnostic, or offer therapeutic potential for rhabdoid tumors. While our findings are of biological interest, there may also be clinical value in comprehensive molecular profiling in patients with multiple rhabdoid tumors, particularly given the potential prognostic and therapeutic implications for different rhabdoid tumor subgroups demonstrated in recent clinical trials and other large cohort studies.