Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bull Math Biol ; 86(3): 24, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294587

RESUMO

Phylogenetic trees are a mathematical formalisation of evolutionary histories between organisms, species, genes, cancer cells, etc. For many applications, e.g. when analysing virus transmission trees or cancer evolution, (phylogenetic) time trees are of interest, where branch lengths represent times. Computational methods for reconstructing time trees from (typically molecular) sequence data, for example Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) methods, rely on algorithms that sample the treespace. They employ tree rearrangement operations such as [Formula: see text] (Subtree Prune and Regraft) and [Formula: see text] (Nearest Neighbour Interchange) or, in the case of time tree inference, versions of these that take times of internal nodes into account. While the classic [Formula: see text] tree rearrangement is well-studied, its variants for time trees are less understood, limiting comparative analysis for time tree methods. In this paper we consider a modification of the classical [Formula: see text] rearrangement on the space of ranked phylogenetic trees, which are trees equipped with a ranking of all internal nodes. This modification results in two novel treespaces, which we propose to study. We begin this study by discussing algorithmic properties of these treespaces, focusing on those relating to the complexity of computing distances under the ranked [Formula: see text] operations as well as similarities and differences to known tree rearrangement based treespaces. Surprisingly, we show the counterintuitive result that adding leaves to trees can actually decrease their ranked [Formula: see text] distance, which may have an impact on the results of time tree sampling algorithms given uncertain "rogue taxa".


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Teorema de Bayes , Filogenia , Algoritmos
2.
Syst Biol ; 69(2): 280-293, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504997

RESUMO

Bayesian Markov chain Monte Carlo explores tree space slowly, in part because it frequently returns to the same tree topology. An alternative strategy would be to explore tree space systematically, and never return to the same topology. In this article, we present an efficient parallelized method to map out the high likelihood set of phylogenetic tree topologies via systematic search, which we show to be a good approximation of the high posterior set of tree topologies on the data sets analyzed. Here, "likelihood" of a topology refers to the tree likelihood for the corresponding tree with optimized branch lengths. We call this method "phylogenetic topographer" (PT). The PT strategy is very simple: starting in a number of local topology maxima (obtained by hill-climbing from random starting points), explore out using local topology rearrangements, only continuing through topologies that are better than some likelihood threshold below the best observed topology. We show that the normalized topology likelihoods are a useful proxy for the Bayesian posterior probability of those topologies. By using a nonblocking hash table keyed on unique representations of tree topologies, we avoid visiting topologies more than once across all concurrent threads exploring tree space. We demonstrate that PT can be used directly to approximate a Bayesian consensus tree topology. When combined with an accurate means of evaluating per-topology marginal likelihoods, PT gives an alternative procedure for obtaining Bayesian posterior distributions on phylogenetic tree topologies.


Assuntos
Classificação/métodos , Filogenia , Algoritmos , Teorema de Bayes , Funções Verossimilhança
3.
Syst Biol ; 69(2): 209-220, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504998

RESUMO

The marginal likelihood of a model is a key quantity for assessing the evidence provided by the data in support of a model. The marginal likelihood is the normalizing constant for the posterior density, obtained by integrating the product of the likelihood and the prior with respect to model parameters. Thus, the computational burden of computing the marginal likelihood scales with the dimension of the parameter space. In phylogenetics, where we work with tree topologies that are high-dimensional models, standard approaches to computing marginal likelihoods are very slow. Here, we study methods to quickly compute the marginal likelihood of a single fixed tree topology. We benchmark the speed and accuracy of 19 different methods to compute the marginal likelihood of phylogenetic topologies on a suite of real data sets under the JC69 model. These methods include several new ones that we develop explicitly to solve this problem, as well as existing algorithms that we apply to phylogenetic models for the first time. Altogether, our results show that the accuracy of these methods varies widely, and that accuracy does not necessarily correlate with computational burden. Our newly developed methods are orders of magnitude faster than standard approaches, and in some cases, their accuracy rivals the best established estimators.


Assuntos
Classificação/métodos , Filogenia , Biologia Computacional/normas , Funções Verossimilhança
4.
J Math Biol ; 76(5): 1101-1121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28756523

RESUMO

A time-tree is a rooted phylogenetic tree such that all internal nodes are equipped with absolute divergence dates and all leaf nodes are equipped with sampling dates. Such time-trees have become a central object of study in phylogenetics but little is known about the parameter space of such objects. Here we introduce and study a hierarchy of discrete approximations of the space of time-trees from the graph-theoretic and algorithmic point of view. One of the basic and widely used phylogenetic graphs, the [Formula: see text] graph, is the roughest approximation and bottom level of our hierarchy. More refined approximations discretize the relative timing of evolutionary divergence and sampling dates. We study basic graph-theoretic questions for these graphs, including the size of neighborhoods, diameter upper and lower bounds, and the problem of finding shortest paths. We settle many of these questions by extending the concept of graph grammars introduced by Sleator, Tarjan, and Thurston to our graphs. Although time values greatly increase the number of possible trees, we show that 1-neighborhood sizes remain linear, allowing for efficient local exploration and construction of these graphs. We also obtain upper bounds on the r-neighborhood sizes of these graphs, including a smaller bound than was previously known for [Formula: see text]. Our results open up a number of possible directions for theoretical investigation of graph-theoretic and algorithmic properties of the time-tree graphs. We discuss the directions that are most valuable for phylogenetic applications and give a list of prominent open problems for those applications. In particular, we conjecture that the split theorem applies to shortest paths in time-tree graphs, a property not shared in the general [Formula: see text] case.


Assuntos
Algoritmos , Filogenia , Evolução Biológica , Cadeias de Markov , Conceitos Matemáticos , Modelos Genéticos , Método de Monte Carlo , Fatores de Tempo
5.
Syst Biol ; 64(3): 472-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25631175

RESUMO

In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks.


Assuntos
Classificação/métodos , Cadeias de Markov , Método de Monte Carlo , Filogenia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Teorema de Bayes , Eucariotos/classificação , Eucariotos/genética , Modelos Genéticos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29994585

RESUMO

The subtree prune-and-regraft (SPR) distance metric is a fundamental way of comparing evolutionary trees. It has wide-ranging applications, such as to study lateral genetic transfer, viral recombination, and Markov chain Monte Carlo phylogenetic inference. Although the rooted version of SPR distance can be computed relatively efficiently between rooted trees using fixed-parameter-tractable maximum agreement forest (MAF) algorithms, no MAF formulation is known for the unrooted case. Correspondingly, previous algorithms are unable to compute unrooted SPR distances larger than 7.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26887004

RESUMO

Evolutionary data has been traditionally modeled via phylogenetic trees; however, branching alone cannot model conflicting phylogenetic signals, so networks are used instead. Ancestral recombination graphs (ARGs) are used to model the evolution of incompatible sets of SNP data, allowing each site to mutate only once. The model often aims to minimize the number of recombinations. Similarly, incompatible cluster data can be represented by a reticulation network that minimizes reticulation events. The ARG literature has traditionally been disjoint from the reticulation network literature. By building on results from the reticulation network literature, we resolve an open question of interest to the ARG community. We explicitly prove that the History Bound, a lower bound on the number of recombinations in an ARG for a binary matrix, which was previously only defined procedurally, is equal to the minimum number of reticulation nodes in a network for the corresponding cluster data. To facilitate the proof, we give an algorithm that constructs this network using intermediate values from the procedural History Bound definition. We then develop a top-down algorithm for computing the History Bound, which has the same worst-case runtime as the known dynamic program, and show that it is likely to run faster in typical cases.


Assuntos
Algoritmos , Biologia Computacional/métodos , Evolução Molecular , Filogenia , Recombinação Genética/genética , Análise por Conglomerados , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
8.
FEMS Microbiol Rev ; 38(1): 90-118, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23909933

RESUMO

A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'


Assuntos
Genes/genética , Microbiota/fisiologia , Animais , Mapeamento Cromossômico , Evolução Molecular , Genoma Bacteriano/genética , Humanos , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA