Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(9): 2063, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33630009

RESUMO

Retraction of 'Convenient synthesis of pyrimidine 2'-deoxyribonucleoside monophosphates with important epigenetic marks at the 5-position' by Song Zheng et al., Org. Biomol. Chem., 2020, 18, 5164-5173, DOI: 10.1039/D0OB00884B.

2.
Bioorg Chem ; 117: 105413, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655842

RESUMO

The mammalian sirtuins are a group of posttranslational modification enzymes that remove acyl modifications from lysine residues in an NAD+-dependent manner. Although initially proposed as histone deacetylases (HDACs), they are now known to target other cellular enzymes and proteins as well. Sirtuin-catalyzed simple amide hydrolysis has profound biological consequences including suppression of gene expression, promotion of DNA damage repair, and regulation of glucose and lipid metabolism. Human sirtuins have been intensively pursued by both academia and industry as potential therapeutic targets for the treatment of diseases such as cancer and neurodegeneration. To gain a better understanding of their roles in various cellular events, innovative chemical probes are highly sought after. This current study focuses on the development of activity-based chemical probes (ABPs) for the profiling of sirtuin activity in biological samples. Cyclooctyne-containing and azido-containing probes were synthesized to enable the subsequent copper-free "click" conjugation to either a fluorophore or biotin. The two groups of structurally related ABPs demonstrated different labeling efficiency and selectivity: the cyclooctyne-containing probes failed to label recombinant sirtuins to any appreciable level, while the azido-containing ABPs showed good isoform selectivity. The azido-containing ABPs were further analyzed for their ability to label an individual sirtuin isoform in protein mixtures and cell lysates. These biocompatible ABPs allow the study of dynamic cellular protein activity change to become possible.


Assuntos
Química Click/métodos , Sirtuínas/metabolismo , Animais , Azidas/análise , Azidas/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Humanos , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Sirtuínas/análise
3.
Org Biomol Chem ; 18(27): 5164-5173, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32584362

RESUMO

Methyl groups of thymine and 5-methylcytosine (5mC) bases in DNA undergo endogenous oxidation damage. Additionally, 5mC residues can be enzymatically deaminated or oxidized through either genetic alterations or the newly identified epigenetic reprogramming pathway. Several methods have been developed to measure the formation of modified DNA nucleobases including 32P-postlabeling. However, the postlabeling method is often limited by the absence of authentic chemical standards. The synthesis of monophosphate standards of nucleotide oxidation products is complicated by the presence of additional functional groups on the modified bases that require complex protection and deprotection strategies. Due to the emerging interest in the pyrimidine oxidation products, the corresponding protected 3'-phosphoramidites needed for solid-phase oligonucleotide synthesis have been reported, and several are commercially available. We report here an efficient synthesis of 3'-monophosphates from 3'-phosphoramidites and the subsequent enzymatic conversion of 3'-monophosphates to the corresponding 5'-monophosphates using commercially available enzymes.

4.
Bioorg Med Chem Lett ; 29(16): 2116-2118, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31281019

RESUMO

The class A ß-lactamase BlaC is a cell surface expressed serine hydrolase of Mycobacterium tuberculosis (Mtb), one of the causative agents for Tuberculosis in humans. Mtb has demonstrated increased susceptibility to ß-lactam antibiotics upon inactivation of BlaC; thus, making BlaC a rational enzyme target for therapeutic agents. Herein, we present the synthesis and structure-activity-relationship data for the 1st-generation library of bis(benzoyl) phosphates (1-10). Substituent effects ranged from σp = -0.27 to 0.78 for electronic and π = -0.41 to 1.98 for hydrophobic parameters. Compounds 1, 4 and 5 demonstrated the greatest inhibitory potency against BlaC in a time-dependent manner (kobs = 0.212, 0.324, and 0.450 mn-1 respectively). Combined crystal structure data and mass spectrometric analysis of a tryptic digest for BlaC inactivated with 4 provided evidence that the mechanism of inactivation by this bis(benzoyl) phosphate scaffold occurs via phosphorylation of the active-site Ser-70, ultimately leading to an aged form of the enzyme.


Assuntos
Mycobacterium tuberculosis/enzimologia , Organofosfatos/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Domínio Catalítico , Cristalografia por Raios X , Ensaios Enzimáticos , Estrutura Molecular , Organofosfatos/síntese química , Fosforilação , Serina/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/síntese química
5.
RSC Adv ; 12(4): 2219-2226, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425235

RESUMO

Adenosine and its derivatives are important building blocks of the biological system. They serve as the universal energy currency, amplify intracellular signals for various signal transduction pathways, and can also be used as the co-substrates for enzymatic transformations. The synthesis and regulation of adenosine and its analogs rely on the adenosine binding proteins (ABPs). Dysregulated ABP activity contributes to numerous diseases such as cancer, metabolic disorders, and neurodegenerative diseases. Presently, there is intense interest in targeting ABPs for therapeutic purposes. A large fraction of the human ABP family remains poorly characterized. The need for innovative chemical probes to investigate ABP function in the native biological matrix is apparent. In this study, an adenosine analog, probe 1, with a photoaffinity group and biotin tag was synthesized using concise synthetic strategies. This probe was able to label and capture individual recombinant ABPs with good target selectivity. Probe 1 was also evaluated for its ability to label spiked ABP in complex cell lysates. This chemical probe, together with the labeling and enrichment assay, is of great value to interrogate the biological functions of ABPs and to elucidate their diversity under different physiological conditions.

6.
Front Physiol ; 12: 752117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744791

RESUMO

The human sirtuins are a group of NAD+-dependent protein deacylases. They "erase" acyl modifications from lysine residues in various cellular targets including histones, transcription factors, and metabolic enzymes. Through these far-reaching activities, sirtuins regulate a diverse array of biological processes ranging from gene transcription to energy metabolism. Human sirtuins have been intensely pursued by both academia and industry as therapeutic targets for a broad spectrum of diseases such as cancer, neurodegenerative diseases, and metabolic disorders. The last two decades have witnessed a flood of small molecule sirtuin regulators. However, there remain relatively few compounds targeting human sirtuins in clinical development. This reflects the inherent issues concerning the development of isoform-selective and potent molecules with good drug-like properties. In this article, small molecule sirtuin regulators that have advanced into clinical trials will be discussed in details as "successful" examples for future drug development. Special attention is given to the discovery of these compounds, the mechanism of action, pharmacokinetics analysis, formulation, as well as the clinical outcomes observed in the trials.

8.
Chem Sci ; 11(43): 11818-11826, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34123208

RESUMO

Recent studies have indicated that 5-methylcytosine (5mC) residues in DNA can be oxidized and potentially deaminated to the corresponding thymine analogs. Some of these oxidative DNA damages have been implicated as new epigenetic markers that could have profound influences on chromatin function as well as disease pathology. In response to oxidative damage, the cells have a complex network of repair systems that recognize, remove and rebuild the lesions. However, how the modified nucleobases are detected and repaired remains elusive, largely due to the limited availability of synthetic oligodeoxynucleotides (ODNs) containing these novel DNA modifications. A concise and divergent synthetic strategy to 5mC derivatives has been developed. These derivatives were further elaborated to the corresponding phosphoramidites to enable the site-specific incorporation of modified nucleobases into ODNs using standard solid-phase DNA synthesis. The synthetic methodology, along with the panel of ODNs, is of great value to investigate the biological functions of epigenetically important nucleobases, and to elucidate the diversity in chemical lesion repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA