Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
2.
Mol Ecol ; 31(7): 2172-2188, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092102

RESUMO

Invertebrates are important for restoration processes as they are key drivers of many landscape-scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time-consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground-dwelling and airborne invertebrates across chronosequences of mine-site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground-dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Animais , Biodiversidade , DNA , Invertebrados/genética , Plantas/genética
3.
Mol Phylogenet Evol ; 172: 107469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351634

RESUMO

Scleractinian corals are a diverse group of ecologically important yet highly threatened marine invertebrates, which can be challenging to identify to the species level. An influx of molecular studies has transformed scleractinian systematics, highlighting that cryptic species may be more common than previously understood. In this study, we test the hypothesis that Plesiastrea versipora (Lamarck, 1816), a species currently considered to occur throughout the Indo-Pacific in tropical, sub-tropical and temperate waters, is a single species. Molecular and morphological analyses were conducted on 80 samples collected from 31 sites spanning the majority of the species putative range and twelve mitogenomes were assembled to identify informative regions for phylogenetic reconstruction. Congruent genetic data across three gene regions supports the existence of two monophyletic clades aligning with distinct tropical and temperate provenances. Multivariate macromorphological analyses based on 13 corallite characters provided additional support for the phylogeographic split, with the number of septa and corallite density varying across this biogeographic divide. Furthermore, micromorphological and microstructural analyses identified that the temperate representatives typically develop sub-cerioid corallites with sparse or absent coenosteal features and smooth septal faces. In contrast, tropical representatives typically develop plocoid corallites separated by a porous dissepimental coenosteum and have granulated septal faces. These data suggest that at least two species exist within the genus PlesiastreaMilne Edwards & Haime, 1848. Based on examination of type material, we retain the name Plesiastrea versipora (Lamarck, 1816) for the temperate representatives of the genus and resurrect the name Plesiastrea peroniMilne Edwards & Haime, 1857 for the tropical members. This study highlights how broadly distributed hard coral taxa still need careful re-examination through an integrated systematics approach to better understand their phylogeographic patterns. Furthermore, it demonstrates the utility of integrating micro-, macro-morphological and genetic datasets, and the importance of type specimens when dealing with taxonomic revisions of scleractinian taxa.


Assuntos
Antozoários , Animais , Filogenia , Filogeografia
4.
Mol Ecol ; 25(19): 4919-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480679

RESUMO

Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis.


Assuntos
Micorrizas/classificação , Microbiologia do Solo , Solo/química , Austrália , Ecossistema , Fósforo/química
5.
PLoS Genet ; 8(4): e1002657, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511890

RESUMO

Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when plant reference databases become better established.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Plantas , RNA Ribossômico 16S , Animais , Antílopes/genética , Asarum/genética , Medicamentos de Ervas Chinesas/efeitos adversos , Espécies em Perigo de Extinção/legislação & jurisprudência , Ephedra/genética , Sequenciamento de Nucleotídeos em Larga Escala , Medicina Tradicional Chinesa/efeitos adversos , Plantas/classificação , Plantas/genética , Plantas/toxicidade , RNA Ribossômico 16S/genética , Ursidae/genética
6.
Mol Ecol Resour ; 23(7): 1540-1555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37237427

RESUMO

In the face of global biodiversity declines, surveys of beneficial and antagonistic arthropod diversity as well as the ecological services that they provide are increasingly important in both natural and agro-ecosystems. Conventional survey methods used to monitor these communities often require extensive taxonomic expertise and are time-intensive, potentially limiting their application in industries such as agriculture, where arthropods often play a critical role in productivity (e.g. pollinators, pests and predators). Environmental DNA (eDNA) metabarcoding of a novel substrate, crop flowers, may offer an accurate and high throughput alternative to aid in the detection of these managed and unmanaged taxa. Here, we compared the arthropod communities detected with eDNA metabarcoding of flowers, from an agricultural species (Persea americana-'Hass' avocado), with two conventional survey techniques: digital video recording (DVR) devices and pan traps. In total, 80 eDNA flower samples, 96 h of DVRs and 48 pan trap samples were collected. Across the three methods, 49 arthropod families were identified, of which 12 were unique to the eDNA dataset. Environmental DNA metabarcoding from flowers revealed potential arthropod pollinators, as well as plant pests and parasites. Alpha diversity levels did not differ across the three survey methods although taxonomic composition varied significantly, with only 12% of arthropod families found to be common across all three methods. eDNA metabarcoding of flowers has the potential to revolutionize the way arthropod communities are monitored in natural and agro-ecosystems, potentially detecting the response of pollinators and pests to climate change, diseases, habitat loss and other disturbances.


Assuntos
Artrópodes , DNA Ambiental , Persea , Humanos , Animais , Ecossistema , Artrópodes/genética , Persea/genética , Código de Barras de DNA Taxonômico/métodos , Biodiversidade , Monitoramento Ambiental/métodos
7.
Mol Ecol Resour ; 23(6): 1257-1274, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36999608

RESUMO

Stygofauna are aquatic fauna that have evolved to live underground. The impacts of anthropogenic climate change, extraction and pollution on groundwater pose major threats to groundwater health, prompting the need for efficient and reliable means to detect and monitor stygofaunal communities. Conventional survey techniques for these species rely on morphological identification and can be biased, labour-intensive and often indeterminate to lower taxonomic levels. By contrast, environmental DNA (eDNA)-based methods have the potential to dramatically improve on existing stygofaunal survey methods in a large range of habitats and for all life stages, reducing the need for the destructive manual collection of often critically endangered species or for specialized taxonomic expertise. We compared eDNA and haul-net samples collected in 2020 and 2021 from 19 groundwater bores and a cave on Barrow Island, northwest Western Australia, and assessed how sampling factors influenced the quality of eDNA detection of stygofauna. The two detection methods were complementary; eDNA metabarcoding was able to detect soft-bodied taxa and fish often missed by nets, but only detected seven of the nine stygofaunal crustacean orders identified from haul-net specimens. Our results also indicated that eDNA metabarcoding could detect 54%-100% of stygofauna from shallow-water samples and 82%-90% from sediment samples. However, there was significant variation in stygofaunal diversity between sample years and sampling types. The findings of this study demonstrate that haul-net sampling has a tendency to underestimate stygofaunal diversity and that eDNA metabarcoding of groundwater can substantially improve the efficiency of stygofaunal surveys.


Assuntos
DNA Ambiental , Água Subterrânea , Animais , DNA Ambiental/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Monitoramento Ambiental/métodos
8.
Sci Total Environ ; 873: 162322, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801404

RESUMO

Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.


Assuntos
DNA Ambiental , Animais , Monitoramento Biológico , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Biodiversidade , Peixes
9.
Sci Total Environ ; 847: 157556, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882340

RESUMO

Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.


Assuntos
DNA Ambiental , Praguicidas , Agricultura , Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental/métodos , Fertilizantes , Humanos , Solo
10.
Sci Total Environ ; 820: 153223, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35063529

RESUMO

Monitoring of biota is pivotal for the assessment and conservation of ecosystems. Environments worldwide are being continuously and increasingly exposed to multiple adverse impacts, and the accuracy and reliability of the biomonitoring tools that can be employed shape not only the present, but more importantly, the future of entire habitats. The analysis of environmental DNA (eDNA) metabarcoding data provides a quick, affordable, and reliable molecular approach for biodiversity assessments. However, while extensively employed in aquatic and terrestrial surface environments, eDNA-based studies targeting subterranean ecosystems are still uncommon due to the lack of accessibility and the cryptic nature of these environments and their species. Recent advances in genetic and genomic analyses have established a promising framework for shedding new light on subterranean biodiversity and ecology. To address current knowledge and the future use of eDNA methods in groundwaters and caves, this review explores conceptual and technical aspects of the application and its potential in subterranean systems. We briefly introduce subterranean biota and describe the most used traditional sampling techniques. Next, eDNA characteristics, application, and limitations in the subsurface environment are outlined. Last, we provide suggestions on how to overcome caveats and delineate some of the research avenues that will likely shape this field in the near future. We advocate that eDNA analyses, when carefully conducted and ideally combined with conventional sampling techniques, will substantially increase understanding and enable crucial expansion of subterranean community characterisation. Given the importance of groundwater and cave ecosystems for nature and humans, eDNA can bring to the surface essential insights, such as study of ecosystem assemblages and rare species detection, which are critical for the preservation of life below, as well as above, the ground.


Assuntos
DNA Ambiental , Ecossistema , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Humanos , Reprodutibilidade dos Testes
11.
Mol Phylogenet Evol ; 59(3): 615-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21419232

RESUMO

Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6-30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1-18.3 Ma) during the Oligocene. The early to middle Miocene (20-10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species' diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.


Assuntos
Cacatuas/classificação , Cacatuas/genética , Evolução Molecular , Filogenia , Animais , DNA Mitocondrial/genética , Papagaios/classificação , Papagaios/genética
12.
Biol Rev Camb Philos Soc ; 96(6): 2828-2850, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34747117

RESUMO

When it comes to the investigation of key ecosystems in the world, we often omit salt from the ecological recipe. In fact, despite occupying almost half of the volume of inland waters and providing crucial services to humanity and nature, inland saline ecosystems are often overlooked in discussions regarding the preservation of global aquatic resources of our planet. As a result, our knowledge of the biological and geochemical dynamics shaping these environments remains incomplete and we are hesitant in framing effective protective strategies against the increasing natural and anthropogenic threats faced by such habitats. Hypersaline lakes, water bodies where the concentration of salt exceeds 35 g/l, occur mainly in arid and semiarid areas resulting from hydrological imbalances triggering the accumulation of salts over time. Often considered the 'exotic siblings' within the family of inland waters, these ecosystems host some of the most extremophile communities worldwide and provide essential habitats for waterbirds and many other organisms in already water-stressed regions. These systems are often highlighted as natural laboratories, ideal for addressing central ecological questions due to their relatively low complexity and simple food web structures. However, recent studies on the biogeochemical mechanisms framing hypersaline communities have challenged this archetype, arguing that newly discovered highly diverse communities are characterised by specific trophic interactions shaped by high levels of specialisation. The main goal of this review is to explore our current understanding of the ecological dynamics of hypersaline ecosystems by addressing four main research questions: (i) why are hypersaline lakes unique from a biological and geochemical perspective; (ii) which biota inhabit these ecosystems and how have they adapted to the high salt conditions; (iii) how do we protect biodiversity from increasing natural and anthropogenic threats; and (iv) which scientific tools will help us preserve hypersaline ecosystems in the future? First, we focus on the ecological characterisation of hypersaline ecosystems, illustrate hydrogeochemical dynamics regulating such environments, and outline key ecoregions supporting hypersaline systems across the globe. Second, we depict the diversity and functional aspects of key taxa found in hypersaline lakes, from microorganisms to plants, invertebrates, waterbirds and upper trophic levels. Next, we describe ecosystem services and discuss possible conservation guidelines. Finally, we outline how cutting-edge technologies can provide new insights into the study of hypersaline ecology. Overall, this review sheds further light onto these understudied ecosystems, largely unrecognised as important sources of unique biological and functional diversity. We provide perspectives for key future research avenues, and advocate that the conservation of hypersaline lakes should not be taken with 'a grain of salt'.


Assuntos
Biodiversidade , Ecossistema , Animais , Invertebrados , Lagos
13.
Sci Rep ; 11(1): 3694, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580159

RESUMO

Groundwaters host vital resources playing a key role in the near future. Subterranean fauna and microbes are crucial in regulating organic cycles in environments characterized by low energy and scarce carbon availability. However, our knowledge about the functioning of groundwater ecosystems is limited, despite being increasingly exposed to anthropic impacts and climate change-related processes. In this work we apply novel biochemical and genetic techniques to investigate the ecological dynamics of an Australian calcrete under two contrasting rainfall periods (LR-low rainfall and HR-high rainfall). Our results indicate that the microbial gut community of copepods and amphipods experienced a shift in taxonomic diversity and predicted organic functional metabolic pathways during HR. The HR regime triggered a cascade effect driven by microbes (OM processors) and exploited by copepods and amphipods (primary and secondary consumers), which was finally transferred to the aquatic beetles (top predators). Our findings highlight that rainfall triggers ecological shifts towards more deterministic dynamics, revealing a complex web of interactions in seemingly simple environmental settings. Here we show how a combined isotopic-molecular approach can untangle the mechanisms shaping a calcrete community. This design will help manage and preserve one of the most vital but underrated ecosystems worldwide.

14.
Mol Ecol Resour ; 20(3)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32065512

RESUMO

Biological surveys based on visual identification of the biota are challenging, expensive and time consuming, yet crucial for effective biomonitoring. DNA metabarcoding is a rapidly developing technology that can also facilitate biological surveys. This method involves the use of next generation sequencing technology to determine the community composition of a sample. However, it is uncertain as to what biological substrate should be the primary focus of metabarcoding surveys. This study aims to test multiple sample substrates (soil, scat, plant material and bulk arthropods) to determine what organisms can be detected from each and where they overlap. Samples (n = 200) were collected in the Pilbara (hot desert climate) and Swan Coastal Plain (hot Mediterranean climate) regions of Western Australia. Soil samples yielded little plant or animal DNA, especially in the Pilbara, probably due to conditions not conducive to long-term preservation. In contrast, scat samples contained the highest overall diversity with 131 plant, vertebrate and invertebrate families detected. Invertebrate and plant sequences were detected in the plant (86 families), pitfall (127 families) and vane trap (126 families) samples. In total, 278 families were recovered from the survey, 217 in the Swan Coastal Plain and 156 in the Pilbara. Aside from soil, 22%-43% of the families detected were unique to the particular substrate, and community composition varied significantly between substrates. These results demonstrate the importance of selecting appropriate metabarcoding substrates when undertaking terrestrial surveys. If the aim is to broadly capture all biota then multiple substrates will be required.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , DNA/genética , Monitoramento Ambiental/métodos , Animais , Artrópodes/genética , Biodiversidade , Clima , Ecossistema , Invertebrados/genética , Metagenômica/métodos , Plantas/genética , Solo
15.
Ecol Evol ; 10(16): 8815-8826, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884659

RESUMO

Food web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (δ13C and δ15N) with radiocarbon data (Δ14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (δ13C, δ15N, and Δ14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased-and species-specific-predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide.

16.
PLoS One ; 15(8): e0237730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857799

RESUMO

Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota.


Assuntos
Ciclo do Carbono , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Microbiota/fisiologia , Solo/química , Austrália , Isótopos de Carbono/metabolismo , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Água Subterrânea/microbiologia , RNA Ribossômico 16S/genética , Chuva , Salinidade , Microbiologia do Solo , Espectrometria de Fluorescência
17.
Nat Ecol Evol ; 2(4): 659-668, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459707

RESUMO

Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary adaptation. Specifically, we assembled its high-quality reference genome (scaffold N50 = 26.9 Mb, contig N50 = 36.6 kb) and gut metagenome, and compared them against those of insectivorous, frugivorous and carnivorous bats. Our analyses showed a particular common vampire bat genomic landscape regarding integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis) challenges of sanguivory. These findings highlight the value of a holistic study of both the host and its microbiota when attempting to decipher adaptations underlying radical dietary lifestyles.


Assuntos
Evolução Biológica , Quirópteros/fisiologia , Dieta , Microbioma Gastrointestinal , Genoma , Animais , Sangue , Quirópteros/genética , Quirópteros/microbiologia , Filogenia
18.
Emerg Microbes Infect ; 5(8): e90, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530749

RESUMO

Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.


Assuntos
Reservatórios de Doenças , Fezes/virologia , Microbioma Gastrointestinal , Variação Genética , Genoma Viral , Infecções por Picornaviridae/epidemiologia , Picornaviridae/genética , Ratos/virologia , Sequência de Aminoácidos , Animais , Dinamarca/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hong Kong/epidemiologia , Humanos , Malásia/epidemiologia , Metagenômica , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/transmissão , RNA Viral , Proteínas Virais/química , Proteínas Virais/genética , Zoonoses
19.
Sci Rep ; 5: 17475, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658160

RESUMO

Globally, there has been an increase in the use of herbal remedies including traditional Chinese medicine (TCM). There is a perception that products are natural, safe and effectively regulated, however, regulatory agencies are hampered by a lack of a toolkit to audit ingredient lists, adulterants and constituent active compounds. Here, for the first time, a multidisciplinary approach to assessing the molecular content of 26 TCMs is described. Next generation DNA sequencing is combined with toxicological and heavy metal screening by separation techniques and mass spectrometry (MS) to provide a comprehensive audit. Genetic analysis revealed that 50% of samples contained DNA of undeclared plant or animal taxa, including an endangered species of Panthera (snow leopard). In 50% of the TCMs, an undeclared pharmaceutical agent was detected including warfarin, dexamethasone, diclofenac, cyproheptadine and paracetamol. Mass spectrometry revealed heavy metals including arsenic, lead and cadmium, one with a level of arsenic >10 times the acceptable limit. The study showed 92% of the TCMs examined were found to have some form of contamination and/or substitution. This study demonstrates that a combination of molecular methodologies can provide an effective means by which to audit complementary and alternative medicines.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/normas , Metais Pesados/análise , Farmacovigilância , Testes de Toxicidade , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/toxicidade , Humanos , Medicina Tradicional Chinesa/efeitos adversos , Metais Pesados/toxicidade , Testes de Toxicidade/métodos
20.
Sci Rep ; 3: 3371, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24288018

RESUMO

Highly fragmented and morphologically indistinct fossil bone is common in archaeological and paleontological deposits but unfortunately it is of little use in compiling faunal assemblages. The development of a cost-effective methodology to taxonomically identify bulk bone is therefore a key challenge. Here, an ancient DNA methodology using high-throughput sequencing is developed to survey and analyse thousands of archaeological bones from southwest Australia. Fossils were collectively ground together depending on which of fifteen stratigraphical layers they were excavated from. By generating fifteen synthetic blends of bulk bone powder, each corresponding to a chronologically distinct layer, samples could be collectively analysed in an efficient manner. A diverse range of taxa, including endemic, extirpated and hitherto unrecorded taxa, dating back to c.46,000 years BP was characterized. The method is a novel, cost-effective use for unidentifiable bone fragments and a powerful molecular tool for surveying fossils that otherwise end up on the taxonomic "scrapheap".


Assuntos
Osso e Ossos/fisiologia , DNA/genética , Arqueologia/métodos , Austrália , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA