Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Small ; : e2400786, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506590

RESUMO

Liquid crystalline elastomers (LCEs) are soft materials that associate order and deformation. Upon deformation, mechanically induced changes order affect entropy and can produce a caloric output (elastocaloric). Elastocaloric effects in materials continue to be considered for functional use as solid state refrigerants. Prior elastocaloric investigations of LCEs and related materials have measured ≈2 °C temperature changes upon deformation (100% strain). Here, the elastocaloric response of LCEs is explored that are prepared with a subambient nematic to isotropic transition temperature. These materials are referred as "isotropic" liquid crystalline elastomers. The LCEs are prepared by a two-step thiol-Michael/thiol-ene reaction. This polymer network chemistry enhances elastic recovery and reduces hysteresis compared to acrylate-based chemistries. The LCEs exhibit appreciable elastocaloric temperature changes upon deformation and recovery (> ± 3 °C, total ΔT of 6 °C) to deformation driven by minimal force (<< 1 MPa). Notably, the strong association of deformation and order and the resulting temperature change attained at low force achieves a responsivity of 14 °C MPa-1 which is seven times greater than natural rubber.

2.
Soft Matter ; 20(8): 1815-1823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305433

RESUMO

Polymer stabilized cholesteric liquid crystals (PSCLCs) are electrically reconfigurable reflective elements. Prior studies have hypothesized and indirectly confirmed that the electro-optic response of these composites is associated with the electrically mediated distortion of the stabilizing polymer network. The proposed mechanism is based on the retention of structural chirality in the polymer stabilizing network, which upon deformation is spatially distorted, which accordingly affects the pitch of the surrounding low molar-mass liquid crystal host. Here, we utilize fluorescent confocal polarized microscopy to directly assess the electro-optic response of PSCLCs. By utilizing dual fluorescent probes, sequential imaging experiments confirm that the periodicity of the polymer stabilizing network matches that of the low molar-mass liquid crystal host. Further, we isolate distinct ion-polymer interactions that manifest in certain photopolymerization conditions.

3.
Phys Rev Lett ; 131(14): 148202, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862652

RESUMO

Liquid crystal elastomer films that morph into cones are strikingly capable lifters. Thus motivated, we combine theory, numerics, and experiments to reexamine the load-bearing capacity of conical shells. We show that a cone squashed between frictionless surfaces buckles at a smaller load, even in scaling, than the classical Seide-Koiter result. Such buckling begins in a region of greatly amplified azimuthal compression generated in an outer boundary layer with oscillatory bend. Experimentally and numerically, buckling then grows subcritically over the full cone. We derive a new thin-limit formula for the critical load, ∝t^{5/2}, and validate it numerically. We also investigate deep postbuckling, finding further instabilities producing intricate states with multiple Pogorelov-type curved ridges arranged in concentric circles or Archimedean spirals. Finally, we investigate the forces exerted by such states, which limit lifting performance in active cones.

4.
Soft Matter ; 19(45): 8882-8888, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955179

RESUMO

Oligomers prepared by chain extension of liquid crystalline monomers are thermotropic. The alignment of liquid crystalline oligomers to shear flow via direct ink write printing is an increasingly popular approach to prepare aligned and 3-D printed liquid crystalline elastomers (LCEs). Here, we are concerned with the contribution of order and thermal history on the rheological properties of liquid crystalline. When the oligomers begin in a polydomain nematic state, the transition to an aligned nematic state occurs gradually over a wide range of shear rates. Conversely, when the oligomers begin in an isotropic state they behave as a Newtonian fluid until a critical shear rate is reached, at which point they align in a critical manner. It is shown that by either decreasing liquid crystalline content or increasing temperature, the viscosity of the oligomer melt decreases while this critical shear rate increases. In addition, the normal stress of oligomers is positive over all shear rates but decreases significantly in magnitude with increasing temperature. By combining the analysis of both temperature and liquid crystalline content, it is demonstrated that the temperature relative to the nematic-isotropic transition temperature is key to the oligomers' unique flow behaviors.

5.
Soft Matter ; 19(25): 4634-4641, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37161870

RESUMO

Polymer stabilization of cholesteric liquid crystals can enable dynamic reconfiguration of the selective reflection of the CLC phase. Here, we explore how the contribution of the elasticity of the polymer stabilizing network affects the ion-mediated, electromechanical deformation and associated electro-optic response in PSCLCs. We utilize a free-radical chain transfer reaction between acrylate and thiol monomers that has been used to prepare elastomeric networks. This work maps the compositional contributions of total concentration and crosslink density to tuning and recovery.

6.
Small ; 18(36): e2200951, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732614

RESUMO

Granular synthetic hydrogels are useful bioinks for their compatibility with a variety of chemistries, affording printable, stimuli-responsive scaffolds with programmable structure and function. Additive manufacturing of microscale hydrogels, or microgels, allows for the fabrication of large cellularized constructs with percolating interstitial space, providing a platform for tissue engineering at length scales that are inaccessible by bulk encapsulation where transport of media and other biological factors are limited by scaffold density. Herein, synthetic microgels with varying degrees of degradability are prepared with diameters on the order of hundreds of microns by submerged electrospray and UV photopolymerization. Porous microgel scaffolds are assembled by particle jamming and extrusion printing, and semi-orthogonal chemical cues are utilized to tune the void fraction in printed scaffolds in a logic-gated manner. Scaffolds with different void fractions are easily cellularized post printing and microgels can be directly annealed into cell-laden structures. Finally, high-throughput direct encapsulation of cells within printable microgels is demonstrated, enabling large-scale 3D culture in a macroporous biomaterial. This approach provides unprecedented spatiotemporal control over the properties of printed microporous annealed particle scaffolds for 2.5D and 3D tissue culture.


Assuntos
Microgéis , Técnicas de Cultura de Células , Hidrogéis/química , Polietilenoglicóis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Soft Matter ; 18(15): 3013-3018, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35355040

RESUMO

Extensive prior research has explored the stabilization of the CLC phase with polymer networks. These prior efforts have demonstrated both tunable and switchable electro-optic reconfiguration of the selective reflection of the CLC phase. Recently, we and other groups have detailed that polymer stabilization of the CLC phase with liquid crystalline monomers retains "structural" chirality (e.g., the chiral phase templates the morphology of the achiral polymer network). Here, we demonstrate that structural chirality can be retained in aliphatic, non-liquid crystalline monomers. PSCLCs prepared by photoinitiated polymerization of aliphatic polymer networks exhibit reversible electro-optic responses. Facilitated by the retention of structural chirality in aliphatic stabilizing polymer networks, we explore the role of surface affinity and crosslink density in the transfer of structural chirality to the liquid crystal media.

8.
Soft Matter ; 18(16): 3168-3176, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380153

RESUMO

Liquid crystalline monomers can be oligomerized and subsequently 3-D printed to prepare liquid crystalline elastomers (LCEs) with spatial variation of the nematic director to create soft materials that undergo complex shape change when subject to stimulus. Here, we detail the correlation of alignment in 3-D printed LCE on the shear history of the oligomeric ink. This coupling is evident both in the polymerization of sheared LCE samples as well as steady-state rheological experiments that quantify the time-dependent flow behaviors of these complex fluids. Under a steady shear flow, oligomeric LC inks transition from a nematic state with unaligned (polydomain) orientation to a uniaxially aligned (monodomain) nematic phase over a large range of applied strain. After cessation of shear flow, the oligomeric LC inks return the polydomain orientation over approximately 30 minutes. The alignment of liquid crystalline segments in the LCE (and the associated stimuli-response of the materials) is ultimately correlated to the degree of strain applied to the ink.

9.
Proc Natl Acad Sci U S A ; 116(13): 5973-5978, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850519

RESUMO

Materials that can be switched between low and high thermal conductivity states would advance the control and conversion of thermal energy. Employing in situ time-domain thermoreflectance (TDTR) and in situ synchrotron X-ray scattering, we report a reversible, light-responsive azobenzene polymer that switches between high (0.35 W m-1 K-1) and low thermal conductivity (0.10 W m-1 K-1) states. This threefold change in the thermal conductivity is achieved by modulation of chain alignment resulted from the conformational transition between planar (trans) and nonplanar (cis) azobenzene groups under UV and green light illumination. This conformational transition leads to changes in the π-π stacking geometry and drives the crystal-to-liquid transition, which is fully reversible and occurs on a time scale of tens of seconds at room temperature. This result demonstrates an effective control of the thermophysical properties of polymers by modulating interchain π-π networks by light.

10.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36615368

RESUMO

Perovskite-related materials show very promising properties in many fields. Pb-free perovskites are particularly interesting, because of the toxicity of Pb. In this study, hybrid double perovskite MA2KBiCl6 (MA = methylammonium cation) was found to have interesting variable temperature behaviours. Both variable temperature single crystal X-ray diffraction, synchrotron powder diffraction, and Raman spectroscopy were conducted to reveal a rhombohedral to cubic phase transition at around 330 K and an order to disorder transition for inorganic cage below 210 K.

11.
Angew Chem Int Ed Engl ; 61(28): e202202577, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482590

RESUMO

Liquid crystal elastomers (LCE) are an emerging class of material actuators. LCE undergo macroscopic dimensional changes when subjected to a stimulus. The large stimuli-response of LCE is associated with thermotropic disruption of order. Historically, comparatively high temperatures are required to disrupt orientation in LCE to achieve meaningful work output. Here, we introduce an approach to prepare LCE via thiol-Michael/thiol-ene reactions that actuate at or below ambient temperature. Alignment was imparted to the LCE by mechanical alignment and 3D printing. The LCE materials detailed here achieve strains of 40 % with a maximum deformation rate of 6.5 % °C-1 . The functional utility of the tunability of the thermotropic response of these materials is illustrated in reconfiguration triggered via body heat and sequential actuation of a multi-material element.

12.
Angew Chem Int Ed Engl ; 61(11): e202116522, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35023253

RESUMO

Diarylethene-functionalized liquid-crystalline elastomers (DAE-LCEs) containing thiol-anhydride bonds were prepared and shown to undergo reversible, reprogrammable photoinduced actuation. Upon exposure to UV light, a monodomain DAE-LCE generated 5.5 % strain. This photogenerated strain was demonstrated to be optically reversible over five cycles of alternating UV/Visible light exposure with minimal photochrome fatigue. The incorporation of thiol-anhydride dynamic bonds allowed for retention of actuated states. Further, re-programming of the nematic director was achieved by heating above the temperature for bond exchange to occur (70 °C) yet below the nematic-to-isotropic transition temperature (100 °C) such that order was maintained between mesogens. The observed thermal stability of each of the diarylethene isomers of over 72 h allowed for decoupling of photo-induced processes and polymer network effects, showing that both polymer relaxation and back-isomerization of the diarylethene contributed to LCE relaxation over a period of 12 hours after actuation unless bond exchange occurred.

13.
J Am Chem Soc ; 143(40): 16740-16749, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590861

RESUMO

Liquid crystal polymer networks (LCNs) are stimuli-responsive materials that can be programmed to realize spatial variation in mechanical response and undergo shape transformation. Herein, we report a process to introduce chemical specificity to the stimuli response of LCNs by integrating enzymes as molecular triggers. Specifically, the enzyme urease was immobilized in LCN films via acyl fluoride conjugation chemistry. Activity assays and confocal fluorescence imaging confirmed retention of urease activity after immobilization as well as widespread distribution of enzyme on the film. The addition of urea triggered a response in the LCN whereby newly generated ammonia reacted with free acyl fluorides to form benzamide moieties. These moieties were capable of dimerizing through the formation of supramolecular hydrogen bonds, which was reflected in a 4-fold increase in Young's modulus. Through dynamic mechanical analysis and calorimetry, we further confirmed that the degree of hydrogen bonding in the LCNs could be judiciously designed to fine-tune the mechanical properties and glass transition temperature. These findings demonstrate the untapped potential of biochemical mechanisms as molecular triggers in LCNs and open the door to the use of nucleophilic chemistries in modulating the mechanical properties of LCNs.


Assuntos
Polímeros
14.
Soft Matter ; 16(2): 330-336, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701098

RESUMO

Programming the local orientation of liquid crystal elastomers (LCEs) is a differentiated approach to prepare monolithic material compositions with localized deformation. Our prior efforts prepared LCEs with surface-enforced spatial variations in orientation to localize deformation when the LCEs were subjected to directional load. However, because these surface alignment methods included regions of planar orientation, the deformation of these programmed LCEs is inherently directional. The absence of macroscopic orientation in polydomain LCEs results in uniform, nonlinear deformation in all axes (omnidirectional soft elasticity). Here, we exploit the distinct mechanical response of polydomain LCEs prepared with isotropic or nematic genesis. By localizing the polydomain genesis via masked photopolymerizations conducted at different temperatures, we detail the preparation of main-chain, polydomain LCEs that are homogeneous in composition but exhibit spatially localized programmability in their mechanical response that is uniform in all directions.

15.
J Am Chem Soc ; 141(3): 1235-1241, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30561996

RESUMO

Resolving the structure-property relationships of two-dimensional (2D) organic-inorganic hybrid perovskites is essential for the development of photovoltaic and photoelectronic devices. Here, pressure (0-10 GPa) was applied to 2D hybrid perovskite flakes mechanically exfoliated from butylammonium lead halide single crystals, (C4H9NH3)2PbI4, from which we observed a series of changes of the strong excitonic emissions in the photoluminescence spectra. By correlating with in situ high-pressure X-ray diffraction results, we examine successfully the relationship between structural modifications in the inorganic PbI42- layer and their excitonic properties. During the transition between Pbca (1b) phase and Pbca (1a) phase at around 0.1 GPa, the decrease in ⟨Pb-I-Pb⟩ bond angle and increase in Pb-I bond length lead to an abrupt blue shift of the excitonic bandgap. The presence of the P21/a phase above 1.4 GPa increases the ⟨Pb-I-Pb⟩ bond angle and decreases the Pb-I bond length, leading to a deep red shift of the excitonic bandgap. The total band gap narrowing of ∼350 meV to 2.03 eV at 5.3 GPa before amorphization, facilitates (C4H9NH3)2PbI4 as a much better solar absorber. Moreover, phase transitions inevitably modify the carrier lifetime of (C4H9NH3)2PbI4, where an initial 150 ps at ambient phase is prolongated to 190 ps in the Pbca (1a) phase along with enhanced photoluminescence (PL), originating from pressure-induced strong radiative recombination of trapped excitons.The onset of P21/a phase shortens significantly the carrier lifetime to 53 ps along with a weak PL emission due to pressure-induced severe lattice distortion and amorphization. High-pressure study on (C4H9NH3)2PbI4 nm-thin flakes may provide insights into the mechanisms for synthetically designing novel 2D hybrid perovskite based photoelectronic devices and solar cells.

16.
Angew Chem Int Ed Engl ; 58(39): 13744-13748, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31219675

RESUMO

Liquid crystal elastomers (LCEs) are anisotropic polymeric materials. When subjected to an applied stress, liquid crystalline (LC) mesogens within the elastomeric polymer network (re)orient to the loading direction. The (re)orientation during deformation results in nonlinear stress-strain dependence (referred to as soft elasticity). Here, we uniquely explore mechanotropic phase transitions in elastomers with appreciable mesogenic content and compare these responses to LCEs in the polydomain orientation. The isotropic (amorphous) elastomers undergo significant directional orientation upon loading, evident in strong birefringence and x-ray diffraction. Functionally, the mechanotropic displacement of the elastomers to load is also nonlinear. However, unlike the analogous polydomain LCE compositions examined here, the isotropic elastomers rapidly recover after deformation. The mechanotropic orientation of the mesogens in these materials increase the toughness of these thiol-ene photopolymers by nearly 1300 % relative to a chemically similar elastomer prepared from wholly isotropic precursors.

17.
J Am Chem Soc ; 140(42): 13952-13957, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30265811

RESUMO

The pressure-induced structural evolution of formamidinium-based perovskite FAPbI3 was investigated using in situ synchrotron X-ray diffraction and laser-excited photoluminescence methods. Cubic α-FAPbI3 ( Pm3̅ m) partially and irreversibly transformed to hexagonal δ-FAPbI3 ( P63 mc) at a pressure less than 0.1 GPa. Structural transitions of α-FAPbI3 followed the sequence of Pm3̅ m → P4/ mbm → Im3̅ → partial amorphous during compression to 6.59 GPa, whereas the δ-phase converted to an orthorhombic Cmc21 structure between 1.26 and 1.73 GPa. During decompression, FAPbI3 recovered the P63 mc structure of the δ-phase as a minor component (∼18 wt %) from 2.41-1.40 GPa and the Pm3̅ m structure of the α-phase becomes dominant (∼82 wt %) at 0.10 GPa but with an increased fraction of δ-FAPbI3. The photoluminescence behaviors from both the α- and δ-forms were likely controlled by radiative recombination at the defect levels rather than band-edge emission during pressure cycling. FAPbI3 polymorphism is exquisitely sensitive to pressure. While modest pressures can engineer FAPbI3-based photovoltaic devices, irreversible δ-phase crystallization may be a limiting factor and should be taken into account.

18.
Small ; 14(39): e1802025, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30085392

RESUMO

The reversible, ultrafast, and multistimuli responsive phase transition of vanadium dioxide (VO2 ) makes it an intriguing "smart" material. Its crystallographic transition from the monoclinic to tetragonal phases can be triggered by diverse stimuli including optical, thermal, electrical, electrochemical, mechanical, or magnetic perturbations. Consequently, the development of high-performance smart devices based on VO2 grows rapidly. This review systematically summarizes VO2 -based emerging technologies by classifying different stimuli (inputs) with their corresponding responses (outputs) including consideration of the mechanisms at play. The potential applications of such devices are vast and include switches, memories, photodetectors, actuators, smart windows, camouflages, passive radiators, resonators, sensors, field effect transistors, magnetic refrigeration, and oscillators. Finally, the challenges of integrating VO2 into smart devices are discussed and future developments in this area are considered.

19.
Soft Matter ; 14(44): 8883-8894, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30206619

RESUMO

Electrical control of the pitch has been reported in a variant of the cholesteric liquid crystal phase composed of chiral dopants and liquid crystal dimers with a bent conformation, such as CB7CB. For a finite range of applied electric field, the dimeric mesogens assume an oblique helicoidal structure, in which the helical axis is aligned along the electric field and the local director is tilted towards the helical axis (rather than being perpendicular to it). An electric field can directly regulate the periodicity (pitch), allowing reconfiguration of the optical response from a scattering or transparent state to a reflective state. Here, we employ po stabilization to retain the oblique helicoidal state absent an applied field. The polymer stabilized oblique helicoidal structures were investigated under various conditions and material compositions. With polymer stabilization, the magnitude of the selective reflection is found to be dependent on the strength of the applied field. Comparison of the electro-optical response of samples with and without a polymer network elucidates the relative role of boundary conditions, anchoring strength, and elastic energy on the stability of the oblique helicoidal state.

20.
Soft Matter ; 14(16): 3127-3134, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29624199

RESUMO

Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of nonisometric origami building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that the nonisometric origami building blocks actuate in the predicted manner, and that the integration of multiple building blocks leads to complex, yet predictable and robust, shapes. We then show that this experimentally realized functionality enables a rich design landscape for actuation using nematic elastomers. We highlight this landscape through examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which provides a template for the programming of arbitrarily complex three dimensional shapes on demand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA