Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 105, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896306

RESUMO

Alzheimer's disease (AD) is a progressive neurological condition characterized by impaired cognitive function and behavioral alterations. While AD research historically centered around mis-folded proteins, advances in mass spectrometry techniques have triggered increased exploration of the AD lipidome with lipid dysregulation emerging as a critical player in AD pathogenesis. Gangliosides are a class of glycosphingolipids enriched within the central nervous system. Previous work has suggested a shift in a-series gangliosides from complex (GM1) to simple (GM2 and GM3) species may be related to the development of neurodegenerative disease. In addition, complex gangliosides with 20 carbon sphingosine chains have been shown to increase in the aging brain. In this study, we utilized matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to interrogate the in situ relationship of a-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1, respectively) in the post-mortem human AD brain. Here, we expanded upon previous literature and demonstrated a significant decrease in the GM1 d20:1 to GM1 d18:1 ratio in regions of the dentate gyrus and entorhinal cortex in AD relative to control brain tissue. Then, we demonstrated that the MALDI-MSI profile of GM3 co-localizes with histologically confirmed amyloid beta (Aß) plaques and found a significant increase in both GM1 and GM3 in proximity to Aß plaques. Collectively, this study demonstrates a perturbation of the ganglioside profile in AD, and validates a pipeline for MALDI-MSI and classic histological staining in the same tissue sections. This demonstrates feasibility for integrating untargeted mass spectrometry imaging approaches into a digital pathology framework.


Assuntos
Doença de Alzheimer , Gangliosídeos , Placa Amiloide , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Gangliosídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Feminino
2.
Alzheimers Dement ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958575

RESUMO

INTRODUCTION: Accurate testing for Alzheimer's disease (AD) represents a crucial step for therapeutic advancement. Currently, tests are expensive and require invasive sampling or radiation exposure. METHODS: We developed a nanoscale flow cytometry (nFC)-based assay of extracellular vesicles (EVs) to screen biomarkers in plasma from mild cognitive impairment (MCI), AD, or controls. RESULTS: Circulating amyloid beta (Aß), tau, phosphorylated tau (p-tau)181, p-tau231, p-tau217, p-tauS235, ubiquitin, and lysosomal-associated membrane protein 1-positive EVs distinguished AD samples. p-tau181, p-tau217, p-tauS235, and ubiquitin-positive EVs distinguished MCI samples. The most sensitive marker for AD distinction was p-tau231, with an area under the receiver operating characteristic curve (AUC) of 0.96 (sensitivity 0.95/specificity 1.0) improving to an AUC of 0.989 when combined with p-tauS235. DISCUSSION: This nFC-based assay accurately distinguishes MCI and AD plasma without EV isolation, offering a rapid approach requiring minute sample volumes. Incorporating nFC-based measurements in larger populations and comparison to "gold standard" biomarkers is an exciting next step for developing AD diagnostic tools. HIGHLIGHTS: Extracellular vesicles represent promising biomarkers of Alzheimer's disease (AD) that can be measured in the peripheral circulation. This study demonstrates the utility of nanoscale flow cytometry for the measurement of circulating extracellular vesicles (EVs) in AD blood samples. Multiple markers including amyloid beta, tau, phosphorylated tau (p-tau)181, p-tau231, p-tau217, and p-tauS235 accurately distinguished AD samples from healthy controls. Future studies should expand blood and cerebrospinal fluid-based EV biomarker development using nanoflow cytometry approaches.

3.
Alzheimers Dement ; 19(1): 194-207, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319162

RESUMO

INTRODUCTION: The primary aim of this paper is to improve the clinical interpretation of white matter hyperintensities (WMHs) and provide an overarching summary of methodological approaches, allowing researchers to design future studies targeting current knowledge gaps. METHODS: A meta-analysis and systematic review was performed investigating associations between baseline WMHs and longitudinal cognitive outcomes in cognitively normal populations, and populations with mild cognitive impairment (MCI), Alzheimer's disease (AD), and stroke. RESULTS: Baseline WMHs increase the risk of cognitive impairment and dementia across diagnostic categories and most consistently in MCI and post-stroke populations. Apolipoprotein E (APOE) genotype and domain-specific cognitive changes relating to strategic anatomical locations, such as frontal WMH and executive decline, represent important considerations. Meta-analysis reliability was assessed using multiple methods of estimation, and results suggest that heterogeneity in study design and reporting remains a significant barrier. DISCUSSION: Recommendations and future directions for study of WMHs are provided to improve cross-study comparison and translation of research into consistent clinical interpretation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia
4.
Anal Chem ; 93(4): 2652-2659, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464828

RESUMO

Periventricular white matter hyperintensities (pvWMHs) are a neurological feature detected with magnetic resonance imaging that are clinically associated with an increased risk of stroke and dementia. pvWMHs represent white matter lesions characterized by regions of myelin and axon rarefaction and as such likely involve changes in lipid composition; however, these alterations remain unknown. Lipids are critical in determining cell function and survival. Perturbations in lipid expression have previously been associated with neurological disorders. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is an emerging technique for untargeted, high-throughput investigation of lipid expression and spatial distribution in situ; however, the use of MALDI IMS has been previously been limited by the need for non-embedded, non-fixed, fresh-frozen samples. In the current study, we demonstrate the novel use of MALDI IMS to distinguish regional lipid abnormalities that correlate with magnetic resonance imaging (MRI) defined pvWMHs within ammonium formate washed, formalin-fixed human archival samples. MALDI IMS scans were conducted in positive or negative ion detection mode on tissues sublimated with 2,5-dihydroxybenzoic acid or 1,5-diaminonaphthalene matrices, respectively. Using a broad, untargeted approach to lipid analysis, we consistently detected 116 lipid ion species in 21 tissue blocks from 11 different post-mortem formalin-fixed human brains. Comparing the monoisotopic mass peaks of these lipid ions elucidated significant differences in lipid expression between pvWMHs and NAWM for 31 lipid ion species. Expanding our understanding of alterations in lipid composition will provide greater knowledge of molecular mechanisms underpinning ischemic white matter lesions and provides the potential for novel therapeutic interventions targeting lipid composition abnormalities.


Assuntos
Encéfalo/patologia , Lipídeos/química , Imageamento por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Substância Branca/patologia , Diagnóstico , Humanos , Substância Branca/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R149-R159, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091154

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent pathology associated with elevated cerebrovascular disease risk. We determined wall mechanics and vascular reactivity in ex vivo middle cerebral arteries (MCA) from male Goto-Kakizaki rats (GK; ~17 wk old) versus control Wistar Kyoto rats (WKY) to test the hypothesis that the diabetic environment in GK, in the absence of obesity and other comorbidities, leads to endothelial dysfunction and impaired vascular tone regulation. Dilation of MCA following challenge with acetylcholine and hypoxia was blunted in MCA from GK versus WKY, due to lower nitric oxide bioavailability and altered arachidonic acid metabolism, whereas myogenic activation and constrictor responses to serotonin were unchanged. MCA wall distensibility and cross-sectional area were not different between GK and WKY, suggesting that wall mechanics were unchanged at this age, supported by the determination that MCA dilation to sodium nitroprusside was also intact. With the use of ex vivo aortic rings as a bioassay, altered vascular reactivity determined in MCA was paralleled by relaxation responses in artery segments from GK, whereas measurements of vasoactive metabolite production indicated a loss of nitric oxide and prostacyclin bioavailability and an increased thromboxane A2 production with both methacholine challenge and hypoxia. These results suggest that endothelium-dependent dilator reactivity of MCA in GK is impaired with T2DM, and that this impairment is associated with the genesis of a prooxidant/pro-inflammatory condition with diabetes mellitus. The restriction of vascular impairments to endothelial function only, at this age and development, provide insight into the severity of multimorbid conditions of which T2DM is only one constituent.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/fisiopatologia , Artéria Cerebral Média/fisiologia , Óxido Nítrico/metabolismo , Animais , Aorta , Pressão Sanguínea , Diabetes Mellitus Tipo 2/patologia , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Nitroprussiato/farmacologia , Ratos , Ratos Endogâmicos , Vasodilatação , Vasodilatadores/farmacologia
6.
Brain Behav Immun ; 80: 25-34, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30776475

RESUMO

Executive dysfunction and white matter inflammation continue to be relatively understudied in rodent models of Alzheimer's disease (AD). Behavioural inflexibility is an important component of executive dysfunction that can be further categorized as perseverative or regressive, which respectively specify whether maladaptive persistence occurs early or late during a behavioural change. Previous studies of the TgAPP21 rat model of AD (expressing pathogenic hAPP) suggested a potentially spontaneous increase of regressive behavioral inflexibility. In this study, 7-8-month-old male TgAPP21 rats were tested for behavioral flexibility, learning, and memory using an operant conditioning chamber and the Morris Water Maze (MWM). TgAPP21 rats demonstrated a regressive behavioral inflexibility during set shifting in an operant conditioning chamber (regressive errors η2 = 0.32 and number of errors after criterion η2 = 0.33). Regressive behavior was also demonstrated in the MWM probe test, wherein TgAPP21 rats significantly increased their swim time in the target quadrant during the last third of the probe test (43% vs 33% in the first 2 thirds of the probe test or the Wt rats' 29%-32%); this behavioral phenotype has not been previously described in the MWM. TgAPP21 demonstrated further impairment of behavioural inflexibility as they committed a greater number of reversal errors in the operant conditioning chamber (η2 = 0.30). Diffuse microglia activation was increased in the white matter tracts of TgAPP21 (corpus callosum, cingulum, and internal capsule; η2 = 0.59-0.62), which was found to correlate with the number of reversal errors in the operant conditioning chamber (R2 = 0.42). As TgAPP21 rats do not spontaneously develop amyloid plaques but have been shown in previous studies to be vulnerable to the development of plaques, these rats demonstrate an important onset of cognitive change and inflammation in the pre-plaque phase of AD. TgAPP21 rats are also an instrumental model for studying the role and mechanism of white matter microglial activation in executive functioning. This is pertinent to clinical research of prodromal AD which has suggested that white matter inflammation may underlie impairment of executive functions such as behavioral flexibility.


Assuntos
Função Executiva/fisiologia , Microglia/metabolismo , Substância Branca/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/fisiologia , Microglia/patologia , Neuroimunomodulação/fisiologia , Placa Amiloide/patologia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Substância Branca/patologia
7.
Alzheimers Dement ; 15(7): 961-984, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31327392

RESUMO

The incidence of stroke and dementia are diverging across the world, rising for those in low- and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action.


Assuntos
Fibrilação Atrial/diagnóstico , Encéfalo/fisiopatologia , Demência/prevenção & controle , Hipertensão/diagnóstico , Acidente Vascular Cerebral/prevenção & controle , Fibrilação Atrial/tratamento farmacológico , Barreira Hematoencefálica , Transtornos Cerebrovasculares/fisiopatologia , Demência/epidemiologia , Saúde Global , Humanos , Hipertensão/tratamento farmacológico , Incidência , Acidente Vascular Cerebral/epidemiologia
8.
Glia ; 66(2): 327-347, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29068088

RESUMO

For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.


Assuntos
Doenças Desmielinizantes/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/toxicidade , Lipídeos de Membrana/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Animais , Células Cultivadas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Feminino , Injeções Intraventriculares , Lisofosfatidilcolinas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
Biochim Biophys Acta Gen Subj ; 1862(6): 1327-1338, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545134

RESUMO

BACKGROUND: Accumulation of simple gangliosides GM2 and GM3, and gangliosides with longer long-chain bases (d20:1) have been linked to toxicity and the pathogenesis of Alzheimer's disease (AD). Conversely, complex gangliosides, such as GM1, have been shown to be neuroprotective. Recent evidence using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) has demonstrated that a-series gangliosides are differentially altered during normal aging, yet it remains unclear how simple species are shifting relative to complex gangliosides in the prodromal stages of AD. METHODS: Ganglioside profiles in wild-type (Wt) and transgenic APP21 Fischer rats were detected and quantified using MALDI-IMS at P0 (birth), 3, 12, and 20 months of age and each species quantified to allow for individual species comparisons. RESULTS: Tg APP21 rats were found to have a decreased level of complex gangliosides in a number of brain regions as compared to Wt rats and showed higher levels of simple gangliosides. A unique pattern of expression was observed in the white matter as compared to gray matter regions, with an age-dependent decrease in GD1 d18:1 species observed and significantly elevated levels of GM3 in Tg APP21 rats. CONCLUSIONS: These results are indicative of a pathological shift in ganglioside homeostasis during aging that is exacerbated in Tg APP21 rats. GENERAL SIGNIFICANCE: Ganglioside dysregulation may occur in the prodromal stages of neurodegenerative diseases like AD.


Assuntos
Envelhecimento , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Gangliosídeos/metabolismo , Homeostase , Lipídeos de Membrana/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Doença de Alzheimer/patologia , Animais , Humanos , Ratos , Ratos Endogâmicos F344
10.
Rapid Commun Mass Spectrom ; 32(12): 951-958, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29575411

RESUMO

RATIONALE: This work focuses on direct matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) detection of intraperitoneally (IP)-injected dipeptide ZP1609 in mouse brain tissue. Direct analysis of drug detection in intact tissue sections provides distribution information that can impact drug development. MALDI-IMS capabilities of uncovering drug transport across the blood-brain barrier are demonstrated. METHODS: Successful peptide detection using MALDI-IMS was achieved using a MALDI TOF/TOF system. Upon optimization of sample preparation procedures for dipeptide ZP1609, an additional tissue acidification procedure was found to greatly enhance signal detection. The imaging data acquired was able to determine successful transport of ZP1609 across the blood-brain barrier. Data obtained from MALDI-IMS can help shape our understanding of biological functions, disease progression, and effects of drug delivery. RESULTS: Direct detection of ZP1609 throughout the brain tissue sections was observed from MALDI-MS images. However, in cases where there was induction of stroke, a peak of lower signal intensity was also detected in the target m/z region. Although distinct differences in signal intensity can be seen between control and experimental groups, fragments and adducts of ZP1609 were investigated using MALDI-IMS to verify detection of the target analyte. CONCLUSIONS: Overall, the data reveals successful penetration of ZP1609 across the blood-brain barrier. The benefits of tissue acidification in the enhancement of detection sensitivity for low-abundance peptides were demonstrated. MALDI-IMS has been shown to be a useful technique in the direct detection of drugs within intact brain tissue sections.


Assuntos
Encéfalo/metabolismo , Dipeptídeos/farmacocinética , Substâncias Protetoras/farmacocinética , Traumatismo por Reperfusão/tratamento farmacológico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Dipeptídeos/administração & dosagem , Dipeptídeos/uso terapêutico , Monitoramento de Medicamentos/métodos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/uso terapêutico
11.
J Stroke Cerebrovasc Dis ; 27(3): 606-619, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29141778

RESUMO

BACKGROUND: It has been hypothesized that ischemic stroke can cause atrial fibrillation. By elucidating the mechanisms of neurogenically mediated paroxysmal atrial fibrillation, novel therapeutic strategies could be developed to prevent atrial fibrillation occurrence and perpetuation after stroke. This could result in fewer recurrent strokes and deaths, a reduction or delay in dementia onset, and in the lessening of the functional, structural, and metabolic consequences of atrial fibrillation on the heart. METHODS: The Pathophysiology and Risk of Atrial Fibrillation Detected after Ischemic Stroke (PARADISE) study is an investigator-driven, translational, integrated, and transdisciplinary initiative. It comprises 3 complementary research streams that focus on atrial fibrillation detected after stroke: experimental, clinical, and epidemiological. The experimental stream will assess pre- and poststroke electrocardiographic, autonomic, anatomic (brain and heart pathology), and inflammatory trajectories in an animal model of selective insular cortex ischemic stroke. The clinical stream will prospectively investigate autonomic, inflammatory, and neurocognitive changes among patients diagnosed with atrial fibrillation detected after stroke by employing comprehensive and validated instruments. The epidemiological stream will focus on the demographics, clinical characteristics, and outcomes of atrial fibrillation detected after stroke at the population level by means of the Ontario Stroke Registry, a prospective clinical database that comprises over 23,000 patients with ischemic stroke. CONCLUSIONS: PARADISE is a translational research initiative comprising experimental, clinical, and epidemiological research aimed at characterizing clinical features, the pathophysiology, and outcomes of neurogenic atrial fibrillation detected after stroke.


Assuntos
Fibrilação Atrial , Isquemia Encefálica , Comunicação Interdisciplinar , Projetos de Pesquisa , Acidente Vascular Cerebral , Pesquisa Translacional Biomédica/métodos , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/fisiopatologia , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/fisiopatologia , Comportamento Cooperativo , Bases de Dados Factuais , Avaliação da Deficiência , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Feminino , Humanos , Masculino , Ontário/epidemiologia , Prognóstico , Estudos Prospectivos , Sistema de Registros , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/fisiopatologia
12.
Anal Chem ; 89(23): 12828-12836, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29095596

RESUMO

1,6-Diphenyl-1,3,5-hexatriene (DPH) is a commonly used fluorescence probe for studying cell membrane-lipids due to its affinity toward the acyl chains in the phospholipid bilayers. In this work, we investigated its use in matrix-assisted laser desorption/ionization (MALDI) as a new matrix for mass spectrometry imaging (MSI) of mouse and rat brain tissue. DPH exhibits very minimal matrix-induced background signals for the analysis of small molecules (below m/z of 1000). In the negative ion mode, DPH permits the highly sensitive detection of small fatty acids (m/z 200-350) as well as a variety of large lipids up to m/z of 1000, including lyso-phospholipid, phosphatidic acid (PA), phosphoethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), and sulfatides (ST). The analytes were mostly detected as the deprotonated ion [M - H]-. Our results also demonstrate that sublimated DPH is stable for at least 24 h under the vacuum of our MALDI mass spectrometer. The ability to apply DPH via sublimation coupled with its low volatility allows us to perform tissue imaging of the above analytes at high spatial resolution. The degree of lipid fragmentation was determined experimentally at varying laser intensities. The results illustrated that the use of relatively low laser energy is important to minimize the artificially generated fatty acid signals. On the other hand, the lipid fragmentation obtained at higher laser energies provided tandem MS information useful for lipid structure elucidation.


Assuntos
Química Encefálica , Difenilexatrieno/química , Ácidos Graxos/análise , Corantes Fluorescentes/química , Fosfolipídeos/análise , Sulfoglicoesfingolipídeos/análise , Animais , Masculino , Camundongos Endogâmicos C57BL , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
Alzheimers Dement ; 13(7): 770-777, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28174071

RESUMO

INTRODUCTION: Heart failure (HF) and atrial fibrillation (AF) have been associated with a higher risk of Alzheimer's disease (AD). Whether HF and AF are related to AD by enhancing AD neuropathological changes is unknown. METHODS: We applied network analyses and multiple logistic regression models to assess the association between HF and AF with severity of AD neuropathology in patients from the National Alzheimer's Coordinating Center database with primary neuropathological diagnosis of AD. RESULTS: We included 1593 patients, of whom 129 had HF and 250 had AF. HF and AF patients were older and had milder AD pathology. In the network analyses, HF and AF were associated with milder AD neuropathology. In the regression analyses, age (odds ratio [OR] 0.94, 95% confidence interval [CI] 0.93-0.95 per 1-year increase in age, P < .001) and the interaction term HF × AF (OR 0.61, 95% CI 0.40-0.91, P = .014) were inversely related to severe AD pathology, whereas APOE ε4 genotype showed a direct association (OR 1.68, 95% CI 1.31-2.16). Vascular neuropathology was more frequent in patient with HF and AF patients than in those without. DISCUSSION: HF and AF had milder AD neuropathology. Patients with milder AD lived longer and had more exposure to vascular risk factors. HF and AF patients showed a higher frequency of vascular neuropathology, which could have contributed to lower the threshold for clinically evident dementia.


Assuntos
Doença de Alzheimer/patologia , Fibrilação Atrial/complicações , Insuficiência Cardíaca/complicações , Idoso , Idoso de 80 Anos ou mais , Demência Vascular/patologia , Feminino , Humanos , Masculino , Fatores de Risco
15.
Int J Mol Sci ; 17(9)2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27563885

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, yet there are no therapeutic treatments that can either cure or delay its onset. Currently, the pathogenesis of AD is still uncertain, especially with respect to how the disease develops from a normal healthy brain. Amyloid ß oligomers (AßO) are highly neurotoxic proteins and are considered potential initiators to the pathogenesis of AD. Rat brains were exposed to AßO via bilateral intracerebroventricular injections. Rats were then euthanized at either 1, 3, 7 or 21-days post surgery. Rat behavioural testing was performed using the Morris water maze and open field tests. Post-mortem brain tissue was immunolabelled for Aß, microglia, and cholinergic neurons. Rats exposed to AßO showed deficits in spatial learning and anxiety-like behaviour. Acute positive staining for Aß was only observed in the corpus callosum surrounding the lateral ventricles. AßO exposed rat brains also showed a delayed increase in activated microglia within the corpus callosum and a decreased number of cholinergic neurons within the basal forebrain. Acute exposure to AßO resulted in mild learning and memory impairments with co-concomitant white matter pathology within the corpus callosum and cholinergic cell loss within the basal forebrain. Results suggest that acute exposure to AßO in the rat may be a useful tool in assessing the early phases for the pathogenesis of AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Memória Espacial/efeitos dos fármacos
16.
Int J Mol Sci ; 16(6): 13921-36, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26090717

RESUMO

Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought to include inflammation. We induce ischemia by unilateral injection of endothelin-I into the rat dorsomedial thalamic nucleus, which has defined reciprocal connections to the frontal cortex. We use a comprehensive test battery to probe for changes in behaviour, including executive functions. After a four-week recovery period, brain sections are stained with markers for degeneration, microglia, astrocytes and myelin. Degenerative processes are localized within the stroke core and along the full thalamocortical projection, which does not translate into measurable behavioural deficits. Significant microglia recruitment, astrogliosis or myelin loss along the axonal projection or within the frontal cortex cannot be detected. These findings indicate that critical effects of stroke-induced axonal degeneration may only be measurable beyond a threshold of stroke severity and/or follow a different time course. Further investigations are needed to clarify the impact of inflammation accompanying axonal degeneration on delayed remote atrophy after stroke.


Assuntos
Axônios/patologia , Comportamento Animal , Isquemia Encefálica/fisiopatologia , Microglia/patologia , Bainha de Mielina/patologia , Regeneração/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Astrócitos/patologia , Masculino , Ratos , Ratos Wistar
17.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463949

RESUMO

Alzheimer's disease (AD) is a progressive neurological condition characterized by impaired cognitive function and behavioural alterations. While AD research historically centered around mis-folded proteins, advances in mass spectrometry techniques have triggered increased exploration of the AD lipidome with lipid dysregulation emerging as a critical player in AD pathogenesis. Gangliosides are a class of glycosphingolipids enriched within the central nervous system. Previous work has suggested a shift in a-series gangliosides from complex (GM1) to simple (GM2 and GM3) species may be related to the development of neurodegenerative disease. Additionally, complex gangliosides with 20 carbon sphingosine chains have been shown to increase in the aging brain. In this study, we utilized matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to interrogate the in situ relationship of a-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1 respectively) in the post-mortem human AD brain. Here, we expanded upon previous literature and demonstrated a significant decrease in the GM1 d20:1:GM1 d18:1 ratio in regions of the dentate gyrus and entorhinal cortex in AD relative to control brain tissue. Then we demonstrated that the MALDI-MSI profile of GM3 co-localizes with histologically confirmed amyloid beta (Aß) plaques and found a significant increase in both GM1 and GM3 in proximity to Aß plaques. Collectively these results support past literature and demonstrate a perturbation of the ganglioside profile in AD. Moreover, this work validates a pipeline for MALDI-MSI and classic histological staining in the same tissue sections. This demonstrates feasibility for integrating untargeted mass spectrometry imaging approaches into a digital pathology framework.

18.
Neural Regen Res ; 19(10): 2119-2131, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488547

RESUMO

Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.

19.
J Appl Physiol (1985) ; 136(1): 122-140, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969083

RESUMO

Previous studies have suggested that the loss of microvessel density in the peripheral circulation with evolving metabolic disease severity represents a significant contributor to impaired skeletal muscle oxygenation and fatigue-resistance. Based on this and our recent work, we hypothesized that cerebral microvascular rarefaction was initiated from the increased prooxidant and proinflammatory environment with metabolic disease and is predictive of the severity of the emergence of depressive symptoms in obese Zucker rats (OZRs). In male OZR, cerebrovascular rarefaction followed the emergence of elevated oxidant and inflammatory environments characterized by increased vascular production of thromboxane A2 (TxA2). The subsequent emergence of depressive symptoms in OZR was associated with the timing and severity of the rarefaction. Chronic intervention with antioxidant (TEMPOL) or anti-inflammation (pentoxifylline) therapy blunted the severity of rarefaction and depressive symptoms, although the effectiveness was limited. Blockade of TxA2 production (dazmegrel) or action (SQ-29548) resulted in a stronger therapeutic effect, suggesting that vascular production and action represent a significant contributor to rarefaction and the emergence of depressive symptoms with chronic metabolic disease (although other pathways clearly contribute as well). A de novo biosimulation of cerebrovascular oxygenation in the face of progressive rarefaction demonstrates the increased probability of generating hypoxic regions within the microvascular networks, which could contribute to impaired neuronal metabolism and the emergence of depressive symptoms. The results of the present study also implicate the potential importance of aggressive prodromic intervention in reducing the severity of chronic complications arising from metabolic disease.NEW & NOTEWORTHY With clinical studies linking vascular disease risk to depressive symptom emergence, we used obese Zucker rats, a model of chronic metabolic disease, to identify potential mechanistic links between these two negative outcomes. Depressive symptom severity correlated with the extent of cerebrovascular rarefaction, after increased vascular oxidant stress/inflammation and TxA2 production. Anti-TxA2 interventions prevasculopathy blunted rarefaction and depressive symptoms, while biosimulation indicated that cerebrovascular rarefaction increased hypoxia within capillary networks as a potential contributing mechanism.


Assuntos
Doenças Metabólicas , Síndrome Metabólica , Rarefação Microvascular , Animais , Ratos , Masculino , Tromboxanos , Depressão , Ratos Zucker , Obesidade/metabolismo , Oxidantes
20.
Neurobiol Dis ; 54: 24-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23473743

RESUMO

Increased brain infiltration of polymorphonuclear neutrophils (PMNs) occurs early after stroke and is important in eliciting brain inflammatory response during stroke recovery. In order to understand the molecular mechanism of PMN entry, we investigated the expression and requirement for Slit1, a chemorepulsive guidance cue, and its cognate receptor, Robo1, in a long-term recovery mouse model of cerebral ischemia. The expression levels of Robo1 were significantly decreased bilaterally at 24h following reperfusion. Robo1 expression levels remained suppressed in the ipsilateral cortex until 28d post MCAO-reperfusion, while the levels of Robo1 in the contralateral cortex recovered to the level of sham-operated mouse by 7d reperfusion. Circulating PMNs express high levels of Slit1, but not Robo1. Influx of PMNs into the ischemic core area occurred early (24h) after cerebral ischemia, when endothelial Robo1 expression was significantly reduced in the ischemic brain, indicating that Robo1 may form a repulsive barrier to PMN entry into the brain parenchyma. Indeed, blocking Slit1 on PMNs in a transwell migration assay in combination with an antibody blocking of Robo1 on human umbilical vein endothelial cells (HUVEC) significantly increased PMN transmigration during oxygen glucose deprivation, an in vitro model of ischemia. Collectively, in the normal brain, the presence of Slit1 on PMNs, and Robo1 on cerebral endothelial cells, generated a repulsive force to prevent the infiltration of PMNs into the brain. During stroke recovery, a transient reduction in Robo1 expression on the cerebral endothelial cells allowed the uncontrolled infiltration of Slit1-expressing PMNs into the brain causing inflammatory reactions.


Assuntos
Encéfalo/metabolismo , Quimiotaxia de Leucócito/fisiologia , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neutrófilos/metabolismo , Receptores Imunológicos/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Western Blotting , Encéfalo/imunologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Acidente Vascular Cerebral/imunologia , Transfecção , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA