Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Reproduction ; 167(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377683

RESUMO

In brief: Seahorses exhibit male pregnancy and are thus valuable comparative models for the study of the physiology and evolution of pregnancy. This study shows that protein is transported from fathers to developing embryos during gestation, and provides new knowledge about paternal contributions to embryonic development. Abstract: Syngnathid embryos (seahorses, pipefishes and seadragons) develop on or in the male in a specialised brooding structure (brood pouch). Seahorse brood pouches supply nutrients, including lipids, to developing embryos (patrotrophy). We tested the hypothesis that proteins, vital for gene regulation and tissue growth during embryogenesis, are also transported from father to embryos, using the Australian pot-bellied seahorse, Hippocampus abdominalis. We used dry masses and total nitrogen content to estimate the total protein content of newly fertilised egg and neonate H. abdominalis. Neonates contained significantly greater protein mass than newly fertilised eggs. This result indicates that paternal protein transport to developing embryos occurs during H. abdominalis pregnancy. This study is the first to show paternal protein transport during pregnancy in seahorses, and furthers our understanding of paternal influence on embryonic development in male pregnant vertebrates.


Assuntos
Smegmamorpha , Animais , Humanos , Recém-Nascido , Masculino , Smegmamorpha/genética , Austrália , Desenvolvimento Embrionário , Pai
2.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388432

RESUMO

The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.


Assuntos
Lagartos , Viviparidade não Mamífera , Animais , Evolução Biológica , Feminino , Genômica , Lagartos/genética , Mamíferos/fisiologia , Placenta , Gravidez , Viviparidade não Mamífera/genética
3.
Gen Comp Endocrinol ; 334: 114210, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646326

RESUMO

Prolactin (PRL) is a multifunctional hormone of broad physiological importance, and is involved in many aspects of fish reproduction, including the regulation of live birth (viviparity) and both male and female parental care. Previous research suggests that PRL also plays an important reproductive role in syngnathid fishes (seahorses, pipefish and seadragons), a group with a highly derived reproductive strategy, male pregnancy - how the PRL axis has come to be co-opted for male pregnancy remains unclear. We investigated the molecular evolution and expression of the genes for prolactin and its receptor (PRLR) in an evolutionarily diverse sampling of syngnathid fishes to explore how the co-option of PRL for male pregnancy has impacted its evolution, and to clarify whether the PRL axis is also involved in regulating reproductive function in species with more rudimentary forms of male pregnancy. In contrast to the majority of teleost fishes, all syngnathid fishes tested carry single copies of PRL and PRLR that cluster genetically within the PRL1 and PRLRa lineages of teleosts, respectively. PRL1 gene expression in seahorses and pipefish is restricted to the pituitary, while PRLRa is expressed in all tissues, including the brood pouch of species with both rudimentary and complex brooding structures. Pituitary PRL1 expression remains stable throughout pregnancy, but PRLRa expression is specifically upregulated in the male brood pouch during pregnancy, consistent with the higher affinity of pouch tissues for PRL hormone during embryonic incubation. Finally, immunohistochemistry of brood pouch tissues reveals that both PRL1 protein and PRLRa and Na+/K+ ATPase-positive cells line the inner pouch epithelium, suggesting that pituitary-derived PRL1 may be involved in brood pouch osmoregulation during pregnancy. Our data provide a unique molecular perspective on the evolution and expression of prolactin and its receptor during male pregnancy, and provide the foundation for further manipulative experiments exploring the role of PRL in this unique form of reproduction.


Assuntos
Prolactina , Smegmamorpha , Animais , Masculino , Feminino , Prolactina/genética , Prolactina/metabolismo , Reprodução/genética , Peixes/metabolismo , Smegmamorpha/genética , Receptores da Prolactina/genética
4.
J Exp Biol ; 224(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785504

RESUMO

Alternative reproductive tactics (ARTs) are correlated suites of sexually selected traits that are likely to impose differential physiological costs on different individuals. While moderate activity might be beneficial, animals living in the wild often work at the margins of their resources and performance limits. Individuals using ARTs may have divergent capacities for activity. When pushed beyond their respective capacities, they may experience condition loss, oxidative stress, and molecular damage that must be repaired with limited resources. We used the Australian painted dragon lizard that exhibits color polymorphism as a model to experimentally test the effect of exercise on body condition, growth, reactive oxygen species (ROS) and telomere dynamics - a potential marker of stress and aging and a correlate of longevity. For most males, ROS levels tended to be lower with greater exercise; however, males with yellow throat patches - or bibs - had higher ROS levels than non-bibbed males. At the highest level of exercise, bibbed males exhibited telomere loss, while non-bibbed males gained telomere length; the opposite pattern was observed in the no-exercise controls. Growth was positively related to food intake but negatively correlated with telomere length at the end of the experiment. Body condition was not related to food intake but was positively correlated with increases in telomere length. These results, along with our previous work, suggest that aggressive - territory holding - bibbed males suffer physiological costs that may reduce longevity compared with non-bibbed males with superior postcopulatory traits.


Assuntos
Lagartos , Animais , Austrália , Lagartos/genética , Masculino , Reprodução , Comportamento Sexual Animal , Telômero
5.
Mol Ecol ; 29(7): 1315-1327, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32153075

RESUMO

Our understanding of the evolution of complex biological traits is greatly advanced by examining taxa with intermediate phenotypes. The transition from oviparity (egg-laying) to viviparity (live-bearing) has occurred independently in many animal lineages, but there are few phenotypic intermediates. The lizard Saiphos equalis exhibits bimodal reproduction, with some viviparous populations, and other oviparous populations with long egg-retention, a rare trait where most of embryonic development occurs inside the mother prior to late ovipositioning. We posit that oviparous S. equalis represent an intermediate form between "true" oviparity and viviparity. We used transcriptomics to compare uterine gene expression in these two phenotypes, and provide a molecular model for the genetic control and evolution of reproductive mode. Many genes are differentially expressed throughout the reproductive cycle of both phenotypes, which have clearly different gene expression profiles overall. The differentially expressed genes within oviparous and viviparous individuals have broadly similar biological functions putatively important for sustaining embryos, including uterine remodelling, respiratory gas and water exchange, and immune regulation. These functional similarities indicate either that long egg-retention is an exaptation for viviparity, or might reflect parallel evolution of similar gravidity-related changes in gene expression in long egg-retention oviparity. In contrast, gene expression changes across the reproductive cycle of long egg-retaining oviparous S. equalis are dramatically different from those of "true" oviparous skinks (such as Lampropholis guichenoti), supporting our assertion that oviparous S. equalis exhibit an intermediate phenotype between "true" oviparity and viviparity.


Assuntos
Lagartos/genética , Lagartos/fisiologia , Oviparidade/genética , Viviparidade não Mamífera/genética , Animais , Evolução Biológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , New South Wales , Transcriptoma
6.
Mol Reprod Dev ; 86(6): 639-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950142

RESUMO

The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin-1, -3, -4, and -5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin-1, -3, and -5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin-4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species-specific.


Assuntos
Claudinas/metabolismo , Células Epiteliais/metabolismo , Marsupiais/metabolismo , Gravidez/metabolismo , Junções Íntimas/metabolismo , Útero/metabolismo , Animais , Feminino
7.
Biol Lett ; 15(4): 20180827, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30940025

RESUMO

Facultative changes in parity mode (oviparity to viviparity and vice versa) are rare in vertebrates, yet offer fascinating opportunities to investigate the role of reproductive lability in parity mode evolution. Here, we report apparent facultative oviparity by a viviparous female of the bimodally reproductive skink Saiphos equalis-the first report of different parity modes within a vertebrate clutch. Eggs oviposited facultatively possess shell characteristics of both viviparous and oviparous S. equalis, demonstrating that egg coverings for viviparous embryos are produced by the same machinery as those for oviparous individuals. Since selection may act in either direction when viviparity has evolved recently, squamate reproductive lability may confer a selective advantage. We suggest that facultative oviparity is a viable reproductive strategy for S. equalis and that squamate reproductive lability is more evolutionarily significant than previously acknowledged.


Assuntos
Lagartos , Oviparidade , Animais , Feminino , Reprodução , Triazinas , Viviparidade não Mamífera
8.
Mol Ecol ; 27(24): 5154-5164, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368957

RESUMO

Telomeres are the non-coding protein-nucleotide "caps" at chromosome ends that contribute to chromosomal stability by protecting the coding parts of the linear DNA from shortening at cell division, and from erosion by reactive molecules. Recently, there has been some controversy between molecular and cell biologists, on the one hand, and evolutionary ecologists on the other, regarding whether reactive molecules erode telomeres during oxidative stress. Many studies of biochemistry and medicine have verified these relationships in cell culture, but other researchers have failed to find such effects in free-living vertebrates. Here, we use a novel approach to measure free radicals (superoxide), mitochondrial "content" (a combined measure of mitochondrial number and size in cells), telomere length and DNA damage at two primary time points during the mating season of an annual lizard species (Ctenophorus pictus). Superoxide levels early in the mating season vary widely and elevated levels predict shorter telomeres both at that time as well as several months later. These effects are likely driven by mitochondrial content, which significantly impacts late season superoxide (cells with more mitochondria have more superoxide), but superoxide effects on telomeres are counteracted by DNA repair as revealed by 8-hydroxy-2'-deoxyguanosine assays. We conclude that reactive oxygen species and DNA repair are fundamental for both short- and long-term regulation of lizard telomere length with pronounced effects of early season cellular stress detectable on telomere length near lizard death.


Assuntos
Reparo do DNA , Lagartos/genética , Estações do Ano , Superóxidos/química , Telômero/genética , Animais , Austrália , Dano ao DNA , Feminino , Hibridização in Situ Fluorescente , Masculino , Mitocôndrias/genética , Estresse Oxidativo , Encurtamento do Telômero
9.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28381620

RESUMO

Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species.


Assuntos
Fatores Etários , Colubridae/fisiologia , Caracteres Sexuais , Telômero/ultraestrutura , Animais , Estudos Transversais , Feminino , Masculino , Comportamento Sexual Animal
10.
J Exp Zool B Mol Dev Evol ; 328(4): 334-346, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28296138

RESUMO

The evolutionary transition from egg-laying to live-bearing in amniote vertebrates (reptiles and mammals) requires the development of a closer association between the maternal and embryonic tissue to facilitate gas and nutrient exchange with the embryo. Because the embryo is an allograft to the father and mother, it could be considered foreign by the maternal immune system and thus be immunologically rejected during pregnancy. In eutherian ("placental") mammals, the proinflammatory genes interleukin 1B (IL1B), tumor necrosis factor (TNF) and tumor necrosis factor receptor superfamily 1A (TNFRSF1A) are tightly regulated in the pregnant uterus to prevent embryonic rejection. We tested whether inflammation is similarly regulated in pregnant viviparous reptiles by comparing the expression of IL1B, TNF, and TNFRSF1A in the pregnant and nonpregnant uterus of the viviparous lizard, Pseudemoia entrecasteauxii. We found statistically significant support for the downregulation of pregnant uterine TNF mRNA expression in P. entrecasteauxii, but no statistically significant changes in mRNA expression of TNFRSF1A or IL1B between pregnant and nonpregnant uteri. Although these genes are apparently not regulated at the transcriptional level, our immunofluorescence microscopy analyses nonetheless demonstrate that the IL1B proteins are stored intracellularly during pregnancy, possibly resulting in inhibition of inflammatory response. We therefore conclude that processes of both transcriptional (TNF) and posttranslational (IL1B) gene regulation may reduce inflammation in the pregnant uterus of this viviparous reptile. Our study is important because it demonstrates that regulating the maternal immune system to prevent embryonic rejection may be important in reptilian pregnancy as it is in mammalian pregnancy.


Assuntos
Regulação da Expressão Gênica/fisiologia , Lagartos/fisiologia , Ovoviviparidade/fisiologia , Útero/metabolismo , Animais , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Gen Comp Endocrinol ; 244: 19-29, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27102939

RESUMO

In oviparous amniotes (reptiles, birds, and mammals) the chorioallantoic membrane (CAM) lines the inside of the egg and acts as the living point of contact between the embryo and the outside world. In livebearing (viviparous) amniotes, communication during embryonic development occurs across placental tissues, which form between the uterine tissue of the mother and the CAM of the embryo. In both oviparous and viviparous taxa, the CAM is at the interface of the embryo and the external environment and can transfer signals from there to the embryo proper. To understand the evolution of placental hormone production in amniotes, we examined the expression of genes involved in hormone synthesis, metabolism, and hormone receptivity in the CAM of species across the amniote phylogeny. We collected transcriptome data for the chorioallantoic membranes of the chicken (oviparous), the lizards Lerista bougainvillii (both oviparous and viviparous populations) and Pseudemoia entrecasteauxii (viviparous), and the horse Equus caballus (viviparous). The viviparous taxa differ in their mechanisms of nutrient provisioning: L. bougainvillii is lecithotrophic (embryonic nourishment is provided via the yolk only), but P. entrecasteauxii and the horse are placentotrophic (embryos are nourished via placental transport). Of the 423 hormone-related genes that we examined, 91 genes are expressed in all studied species, suggesting that the chorioallantoic membrane ancestrally had an endocrine function. Therefore, the chorioallantoic membrane appears to be a highly hormonally active organ in all amniotes. No genes are expressed only in viviparous species, suggesting that the evolution of viviparity has not required the recruitment of any specific hormone-related genes. Our data suggest that the endocrine function of the CAM as a placental tissue evolved in part through co-option of ancestral gene expression patterns.


Assuntos
Membrana Corioalantoide/metabolismo , Oviparidade/fisiologia , Animais , Galinhas , Feminino , Genômica , Cavalos , Lagartos , Mamíferos , Gravidez , Transdução de Sinais
12.
Mol Biol Evol ; 32(12): 3114-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26330546

RESUMO

Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages.


Assuntos
Reprodução/genética , Smegmamorpha/genética , Viviparidade não Mamífera/genética , Animais , Evolução Biológica , Feminino , Fertilização , Perfilação da Expressão Gênica , Masculino , Análise de Sequência de RNA , Comportamento Sexual Animal
13.
Biol Lett ; 12(7)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27405377

RESUMO

There is now good evidence in several taxa that animal coloration positively reflects an individual's antioxidant capacity. However, even though telomeres, a marker of ageing, are known to be vulnerable to reactive oxygen species (ROS) attacks, no studies have ever assessed whether colour fading reflects the rate of biological ageing in any taxa. Here, we measured colour fading, telomere erosion (a measure of biological ageing) and ROS levels in painted dragons. We show that individuals that were better at maintaining their coloration during the three months of the study suffered a higher cost in terms of telomere erosion, but overall ROS levels measured at the start of the study were not significantly related to colour maintenance and telomere shortening. We therefore suggest that colour maintenance is a costly phenomenon in terms of telomere erosion, and that overall ROS levels do not seem to be a crucial component linking ornamental coloration and telomere erosion in our study system.


Assuntos
Envelhecimento/fisiologia , Lagartos/fisiologia , Pigmentação/fisiologia , Espécies Reativas de Oxigênio/sangue , Animais , Cor , Masculino , Encurtamento do Telômero
14.
J Exp Zool B Mol Dev Evol ; 324(2): 152-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25732926

RESUMO

Angiogenesis (blood vessel growth), a key process of mammalian pregnancy, facilitates gas exchange and nutrient transport between the mother and the embryo and is regulated by a suite of growth factors. Vascular endothelial growth factor (VEGF) is crucial to this process in pregnant mammals and potentially pregnant squamates (lizards and snakes), as we investigate here. VEGF111 , an unusual and potent angiogenic splice variant of VEGF, increases its expression during pregnancy in the uterus of a viviparous lizard, in parallel with similar increases in uterine angiogenesis during gestation. However, we also find that VEGF111 is expressed in oviparous skinks, and is not ubiquitous among viviparous skinks. Thus, different mechanisms of uterine angiogenesis during pregnancy may evolve concurrent with viviparity in different lizard lineages.


Assuntos
Lagartos/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Viviparidade não Mamífera/fisiologia , Animais , Feminino , Oviparidade/fisiologia , Filogenia , Gravidez , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Útero/metabolismo
15.
J Exp Zool B Mol Dev Evol ; 324(6): 493-503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25732809

RESUMO

To understand evolutionary transformations it is necessary to identify the character states of extinct ancestors. Ancestral character state reconstruction is inherently difficult because it requires an accurate phylogeny, character state data, and a statistical model of transition rates and is fundamentally constrained by missing data such as extinct taxa. We argue that model based ancestral character state reconstruction should be used to generate hypotheses but should not be considered an analytical endpoint. Using the evolution of viviparity and reversals to oviparity in squamates as a case study, we show how anatomical, physiological, and ecological data can be used to evaluate hypotheses about evolutionary transitions. The evolution of squamate viviparity requires changes to the timing of reproductive events and the successive loss of features responsible for building an eggshell. A reversal to oviparity requires that those lost traits re-evolve. We argue that the re-evolution of oviparity is inherently more difficult than the reverse. We outline how the inviability of intermediate phenotypes might present physiological barriers to reversals from viviparity to oviparity. Finally, we show that ecological data supports an oviparous ancestral state for squamates and multiple transitions to viviparity. In summary, we conclude that the first squamates were oviparous, that frequent transitions to viviparity have occurred, and that reversals to oviparity in viviparous lineages either have not occurred or are exceedingly rare. As this evidence supports conclusions that differ from previous ancestral state reconstructions, our paper highlights the importance of incorporating biological evidence to evaluate model-generated hypotheses.


Assuntos
Evolução Biológica , Lagartos/fisiologia , Oviparidade/fisiologia , Serpentes/fisiologia , Viviparidade não Mamífera/fisiologia , Animais , Feminino , Lagartos/anatomia & histologia , Filogenia , Serpentes/anatomia & histologia
16.
BMC Evol Biol ; 14: 273, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526691

RESUMO

BACKGROUND: The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIß loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. RESULTS: The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIß, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIß loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. CONCLUSIONS: Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIß loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.


Assuntos
Genes MHC da Classe II , Smegmamorpha/genética , Smegmamorpha/imunologia , Animais , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Variação Genética , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Masculino , Dados de Sequência Molecular , Recombinação Genética
17.
Nature ; 453(7192): 175-83, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18464734

RESUMO

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.


Assuntos
Evolução Molecular , Genoma/genética , Ornitorrinco/genética , Animais , Composição de Bases , Dentição , Feminino , Impressão Genômica/genética , Humanos , Imunidade/genética , Masculino , Mamíferos/genética , MicroRNAs/genética , Proteínas do Leite/genética , Filogenia , Ornitorrinco/imunologia , Ornitorrinco/fisiologia , Receptores Odorantes/genética , Sequências Repetitivas de Ácido Nucleico/genética , Répteis/genética , Análise de Sequência de DNA , Espermatozoides/metabolismo , Peçonhas/genética , Zona Pelúcida/metabolismo
18.
Mol Cell Proteomics ; 11(11): 1354-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22899769

RESUMO

The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution.


Assuntos
Estruturas Animais/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Peptídeos/metabolismo , Ornitorrinco/genética , Proteômica , Peçonhas/metabolismo , Animais , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Ornitorrinco/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Peçonhas/genética
19.
Nat Ecol Evol ; 8(7): 1311-1326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945974

RESUMO

Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XY1Y2 sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations.


Assuntos
Conservação dos Recursos Naturais , Genoma , Marsupiais , Animais , Marsupiais/genética , Austrália , Polimorfismo de Nucleotídeo Único , Extinção Biológica
20.
Mol Biol Evol ; 29(1): 167-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21816864

RESUMO

Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.


Assuntos
Evolução Molecular , Duplicação Gênica , Ornitorrinco/genética , Peçonhas/genética , Animais , Análise por Conglomerados , Bases de Dados Genéticas , Masculino , Filogenia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA