Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 451-461, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38113512

RESUMO

With the mounting need for clean and renewable energy, catalysts for hydrogen production based on earth abundant elements are of great interest. Herein, we describe the synthesis, characterization, and catalytic activity of two nickel complexes based on the pyridinediimine ligand that possess basic nitrogen moieties of pyridine and imidazole that could potentially serve as pendent bases to enhance catalysis. Although these ligands have previously been reported to be complexed to some metal ions, they have not been applied to nickel. The nickel complex with the pendent pyridines was found to be the most active of the two, catalyzing proton reduction electrochemically with an overpotential of 490 mV. The appearance of a wave that preceded the Ni(I/0) redox couple in the presence of protons suggests that protonation of a dissociated pyridine was likely. Further evidence of this was provided with density functional theory calculations, and a mechanism of hydrogen production is proposed. Furthermore, in a light-driven system containing Ru(bpy)32+ and ascorbic acid, TON of 1400 were obtained.

2.
Inorg Chem ; 52(4): 1772-9, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23368778

RESUMO

We report the first in-situ time-resolved X-ray diffraction investigation in conjunction with a non-isothermal kinetic study using the model-free isoconversional kinetic method to determine the formation mechanism for the solid-state synthesis of electrochemically active LiCoO(2) from Li(2)CO(3) and Co(3)O(4). Detailed information on the phase evolution as well as thermal events during the heating process was clearly observed, explained, and supported. This investigation provides structural as well as kinetic evidence for a multistep reaction and proposes the first plausible formation mechanism for the solid-state synthesis of LiCoO(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA