Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Chem Chem Phys ; 26(9): 7830-7836, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375894

RESUMO

We investigate the thermodiffusive properties of aqueous solutions of lithium chloride, using thermal diffusion forced Rayleigh scattering in a concentration range of 0.5-2 mole per kg of solvent and a temperature range of 5 to 45 °C. All solutions exhibit non-monotonic variations of the Soret coefficient ST with a concentration exhibiting a minimum at about one mole per kg of solvent. The depth of the minimum decreases with increasing temperature and shifts slightly towards higher concentrations. We compare the experimental data with published data and apply a recent model based on overlapping hydration shells. Additionally, we calculate the ratio of the phenomenological Onsager coefficients using our experimental results and published data to calculate the thermodynamic factor. Simple linear, quadratic and exponential functions can be used to describe this ratio accurately, and together with the thermodynamic factors, the experimental Soret coefficients can be reproduced. The main conclusion from this analysis is that the minimum of the Soret coefficients results from a maximum in the thermodynamic factor, which appears itself at concentrations far below the experimental concentrations. Only after multiplication by the (negative) monotonous Onsager ratio does the minimum move into the experimental concentration window.

2.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38828819

RESUMO

Thermophoresis, or thermodiffusion, is becoming a more popular method for investigating the interactions between proteins and ligands due to its high sensitivity to the interactions between solutes and water. Despite its growing use, the intricate mechanisms behind thermodiffusion remain unclear. This gap in knowledge stems from the complexities of thermodiffusion in solvents that have specific interactions as well as the intricate nature of systems that include many components with both non-ionic and ionic groups. To deepen our understanding, we reduce complexity by conducting systematic studies on aqueous salt solutions. In this work, we focused on how guanidinium salt solutions behave in a temperature gradient, using thermal diffusion forced Rayleigh scattering experiments at temperatures ranging from 15 to 35 °C. We looked at the thermodiffusive behavior of four guanidinium salts (thiocyanate, iodide, chloride, and carbonate) in solutions with concentrations ranging from 1 to 3 mol/kg. The guanidinium cation is disk-shaped and is characterized by flat hydrophobic surfaces and three amine groups, which enable directional hydrogen bonding along the edges. We compare our results to the behavior of salts with spherical cations, such as sodium, potassium, and lithium. Our discussions are framed around how different salts are solvated, specifically in the context of the Hofmeister series, which ranks ions based on their effects on the solvation of proteins.

3.
Eur Phys J E Soft Matter ; 45(2): 10, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35106668

RESUMO

Specific ion effects play an important role in scientific and technological processes. According to Hofmeister, the influence on the hydrogen bond network depends on the ion and leads to a specific order of the ions. Also thermodiffusion the mass transport caused by a temperature gradient is very sensitive to changes of the hydrogen bond network leading to a ranking according to hydrophilicity of the salt. Hence, we investigate various salt solutions in order to compare with the Hofmeister concept. We have studied three different sodium salts in water as a function of temperature (25-45[Formula: see text]C) and concentration (0.5-5 mol kg[Formula: see text]) using Thermal Diffusion Forced Rayleigh Scattering (TDFRS). The three anions studied, carbonate, acetate and thiocyanate, span the entire range of the Hofmeister series from hydrophilic to hydrophobic. We compare the results with the recent measurements of the corresponding potassium salts to see to what extent the cation changes the thermodiffusion of the salt.


Assuntos
Difusão Térmica , Água , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Íons
4.
Phys Chem Chem Phys ; 24(44): 27380-27387, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36331005

RESUMO

We investigate the thermodiffusive properties of aqueous solutions of sodium iodide, potassium iodide and lithium iodide, using thermal diffusion forced Rayleigh scattering in a concentration range of 0.5-4 mol kg-1 of solvent, large enough to deal with associated salts, and a temperature range of 15 to 45 °C. All systems exhibit non-monotonic variations of the Soret coefficient ST with concentration, with a minimum at one mol kg-1 of solvent in all three cases. We take this as an indication that the relevant length and energy scales are very similar in all cases. On this basis we develop an intuitive picture in which the relevant objects are the fully hydrated salt molecules, including all water molecules that behave differently from bulk water. Preliminary, somewhat sketchy calculations indicate that indeed Soret coefficients begin to rise beyond concentrations where the fully hydrated particles are randomly close packed. Indications are given as to why the model will fail at large concentrations.

5.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430678

RESUMO

In recent years, thermophoresis has emerged as a promising tool for quantifying biomolecular interactions. The underlying microscopic physical effect is still not understood, but often attributed to changes in the hydration layer once the binding occurs. To gain deeper insight, we investigate whether non-equilibrium coefficients can be related to equilibrium properties. Therefore, we compare thermophoretic data measured by thermal diffusion forced Rayleigh scattering (TDFRS) (which is a non-equilibrium process) with thermodynamic data obtained by isothermal titration calorimetry (ITC) (which is an equilibrium process). As a reference system, we studied the chelation reaction between ethylenediaminetetraacetic acid (EDTA) and calcium chloride (CaCl2) to relate the thermophoretic behavior quantified by the Soret coefficient ST to the Gibb's free energy ΔG determined in the ITC experiment using an expression proposed by Eastman. Finally, we have studied the binding of the protein Bovine Carbonic Anhydrase I (BCA I) to two different benzenesulfonamide derivatives: 4-fluorobenzenesulfonamide (4FBS) and pentafluorobenzenesulfonamide (PFBS). For all three systems, we find that the Gibb's free energies calculated from ST agree with ΔG from the ITC experiment. In addition, we also investigate the influence of fluorescent labeling, which allows measurements in a thermophoretic microfluidic cell. Re-examination of the fluorescently labeled system using ITC showed a strong influence of the dye on the binding behavior.


Assuntos
Anidrase Carbônica I , Proteínas , Bovinos , Animais , Ligantes , Termodinâmica , Calorimetria/métodos
6.
Eur Phys J E Soft Matter ; 44(10): 130, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34668081

RESUMO

This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.


Assuntos
Microscopia , Temperatura
7.
J Chem Phys ; 154(8): 084506, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639776

RESUMO

Thermophoresis or thermodiffusion has become an important tool to monitor protein-ligand binding as it is very sensitive to the nature of solute-water interactions. However, the microscopic mechanisms underlying thermodiffusion in protein systems are poorly understood at this time. One reason is the difficulty to separate the effects of the protein system of interest from the effects of buffers that are added to stabilize the proteins. Due to the buffers, typical protein solutions form multicomponent mixtures with several kinds of salt. To achieve a more fundamental understanding of thermodiffusion of proteins, it is therefore necessary to investigate solutions of buffer salts. For this work, the thermodiffusion of aqueous potassium salt solutions has been studied systematically. We use thermal diffusion forced Rayleigh scattering experiments in a temperature range from 15 °C to 45 °C to investigate the thermodiffusive properties of aqueous solutions of five potassium salts: potassium chloride, potassium bromide, potassium thiocyanate, potassium acetate, and potassium carbonate in a molality range between 1 mol/kg and 5 mol/kg. We compare the thermophoretic results with those obtained for non-ionic solutes and discuss the thermophoresis of the salts in the context of ion-specific solvation according to the Hofmeister series.


Assuntos
Brometos/química , Carbonatos/química , Acetato de Potássio/química , Cloreto de Potássio/química , Compostos de Potássio/química , Potássio/química , Proteínas/química , Tiocianatos/química , Soluções , Temperatura , Difusão Térmica , Água/química
8.
Entropy (Basel) ; 22(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33286719

RESUMO

In recent years, there has been increasing interest in the development of micron-scale devices utilizing thermal gradients to manipulate molecules and colloids, and to measure their thermophoretic properties quantitatively. Various devices have been realized, such as on-chip implements, micro-thermogravitational columns and other micron-scale thermophoretic cells. The advantage of the miniaturized devices lies in the reduced sample volume. Often, a direct observation of particles using various microscopic techniques is possible. On the other hand, the small dimensions lead to some technical problems, such as a precise temperature measurement on small length scale with high spatial resolution. In this review, we will focus on the "state of the art" thermophoretic micron-scale devices, covering various aspects such as generating temperature gradients, temperature measurement, and the analysis of the current micron-scale devices. We want to give researchers an orientation for their development of thermophoretic micron-scale devices for biological, chemical, analytical, and medical applications.

9.
Langmuir ; 35(4): 1000-1007, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30607956

RESUMO

In this study, we investigated the thermodiffusion behavior of a colloidal model system as a function of the Debye length, λDH, which is controlled by the ionic strength. Our system consists of an fd-virus grafted with poly(ethylene glycol) (PEG) with a molecular mass of 5000 g mol-1. The results are compared with recent measurements on a bare fd-virus and with results of PEG. The diffusion coefficients of both viruses are comparable and increase with the increasing Debye length. The thermal diffusion coefficient, DT, of the bare virus increases strongly with the Debye length, whereas DT of the grafted fd-virus shows only a very weak increase. The Debye length dependence of both systems can be described with an expression derived for charged rods using the surface charge density and an offset of DT as adjustable parameters. It turns out that the ratio of the determined surface charges is inverse to the ratio of the surfaces of the two systems, which means that the total charge remains almost constant. The determined offset of the grafted fd-virus describing the chemical contributions is the sum of DT of PEG and the offset of the bare fd-virus. At high λDH, corresponding to the low ionic strength, the ST values of both colloidal model systems approach each other. This implies a contribution from the polymer layer, which is strong at short λDH and fades out for the longer Debye lengths, when the electric double layer reaches further than the polymer chains and therefore dominates interactions with the surrounding water.

10.
Eur Phys J E Soft Matter ; 42(9): 117, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31486949

RESUMO

Presently, microfluidic traps are designed mimicking the environment of hydrothermal pores, where a combination of thermophoresis and convection leads to accumulation so that high concentrations of organic matter can be reached. Such a setup is interesting in the context of the origin of life to observe accumulation and possible further synthesis of small organic molecules or prebiotic molecules such as nucleotides or RNA-fragments, but could also be used to replicate DNA-strands. The addition of coupling agents for the activation of carboxyl or phosphate groups such as 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and EDC-hydrochloride (EDC-HCl) is necessary in order to speed up the process. This work characterizes the thermophoretic properties of EDC and EDC-HCl needed to optimize the design of the traps. At p H 4-6 spontaneous hydrolysis of EDC is observed, which also leads to a neutralisation of the p H. In order to evaluate the thermodiffusion measurements the rate constants were measured at 23 and [Formula: see text] C and the activation energy of the hydrolysis calculated.

11.
Eur Phys J E Soft Matter ; 42(5): 68, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31144058

RESUMO

Recent experiments for various amides and sugars showed a clear correlation of the temperature dependence of the Soret coefficient with the hydrophilicity, quantitatively described by the logarithm of the 1-octanol/water partition coefficient log P . This coefficient is a measure for the hydrophilicity/hydrophobicity balance of a solute and is often used to model the transport of a compound in the environment or to screen for potential pharmaceutical compounds. In order to validate whether this concept works also for other water soluble molecules we investigated systematically the thermophoresis of mono- and polyhydric alcohols. As experimental method we use a holographic grating technique called infrared Thermal Diffusion Forced Rayleigh Scattering (IR-TDFRS). Experiments showed that the temperature dependence of the Soret coefficient of polyhydric alcohols also correlates with log P and lies on the same master plot as amides and sugars.

12.
Proc Natl Acad Sci U S A ; 113(16): 4272-7, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044100

RESUMO

Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth.


Assuntos
DNA/química , Formamidas/química , Fontes Hidrotermais/química , Nucleotídeos/química , Origem da Vida
13.
Phys Chem Chem Phys ; 20(2): 1012-1020, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235590

RESUMO

Urea is widely used as a protein denaturant in aqueous solutions. Experimental and computer simulation studies have shown that it dissolves in water almost ideally at high concentrations, introducing little disruption in the water hydrogen bonded structure. However, at concentrations of the order of 5 M or higher, urea induces denaturation in a wide range of proteins. The origin of this behaviour is not completely understood, but it is believed to stem from a balance between urea-protein and urea-water interactions, with urea becoming possibly hydrophobic at a specific concentration range. The small changes observed in the water structure make it difficult to connect the denaturation effects to the solvation properties. Here we show that the exquisite sensitivity of thermodiffusion to solute-water interactions allows the identification of the onset of hydrophobicity of urea-water mixtures. The hydrophobic behaviour is reflected in a sign reversal of the temperature dependent slope of the Soret coefficient, which is observed, both in experiments and non-equilibrium computer simulations at ∼5 M concentration of urea in water. This concentration regime corresponds to the one where abrupt changes in the denaturation of proteins are commonly observed. We show that the onset of hydrophobicity is intrinsically connected to the urea-water interactions. Our results allow us to identify correlations between the Soret coefficient and the partition coefficient, log P, hence establishing the thermodiffusion technique as a powerful approach to study hydrophobicity.


Assuntos
Desnaturação Proteica , Ureia/química , Água/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Difusão Térmica
14.
J Chem Phys ; 149(4): 044506, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30068171

RESUMO

In recent years, the response of biomolecules to a temperature gradient has been utilized to monitor reactions of biomolecules, but the underlying mechanism is not well understood due to the complexity of the multicomponent system. To identify some underlying principles, we investigate the thermal diffusion of small amide molecules in water systematically. We re-analyze previous measurements of urea and formamide and compare the results with acetamide, N-methylformamide, and N,N-dimethylformamide, amides with a lower hydrophilicity. It turns out that less hydrophilic substances do not show the typical temperature dependence of water soluble macromolecules. Analyzing temperature and concentration dependent measurements using an empirical expression originally derived for nonpolar mixtures, we find that the so-called isotope contribution depends strongly on the hydrophilicity of the solute. This can be qualitatively understood by comparing with molecular dynamic simulations of Lennard-Jones fluids. The hydrophobic/hydrophilic balance also influences the structure in the fluid and with that the thermal expansion coefficient, which correlates with the thermal diffusion coefficient. Furthermore, we observe a clear correlation of the temperature and concentration dependence of the Soret coefficient with the hydrophilicity, which can be quantitatively described by the partition coefficient log P.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Peptídeos/química , Temperatura , Amidas/química , Difusão , Pesquisa Empírica , Solubilidade , Água/química
15.
Langmuir ; 33(34): 8483-8492, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28780866

RESUMO

Temperature gradient-induced migration of biomolecules, known as thermophoresis or thermodiffusion, changes upon ligand binding. In recent years, this effect has been used to determine protein-ligand binding constants. The mechanism through which thermodiffusive properties change when complexes are formed, however, is not understood. An important contribution to thermodiffusive properties originates from the thermal response of hydrogen bonds. Because there is a considerable difference between the degree of solvation of the protein-ligand complex and its isolated components, ligand-binding is accompanied by a significant change in hydration. The aim of the present work is therefore to investigate the role played by hydrogen bonding on the change in thermodiffusive behavior upon ligand-binding. As a model system, we use cyclodextrins (CDs) and acetylsalicylic acid (ASA), where quite a significant change in hydration is expected and where no conformational changes occur when a CD/ASA complex is formed in aqueous solution. Thermophoresis was investigated in the temperature range of 10-50 °C by infrared thermal diffusion forced Rayleigh scattering. Nuclear magnetic resonance measurements were performed at 25 °C to obtain information about the structure of the complexes. All CD/ASA complexes show a stronger affinity toward regions of lower temperature compared to the free CDs. We found that the temperature sensitivity of thermophoresis correlates with the 1-octanol/water partition coefficient. This observation not only establishes the relation between thermodiffusion and degree of hydrogen bonding but also opens the possibility to relate thermodiffusive properties of complexes to their partition coefficient, which cannot be determined otherwise. This concept is especially interesting for protein-ligand complexes where the protein undergoes a conformational change, different from the CD/ASA complexes, giving rise to additional changes in their hydrophilicity.


Assuntos
Ciclodextrinas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Difusão Térmica
16.
Eur Phys J E Soft Matter ; 39(9): 86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27663869

RESUMO

Cyclodextrins are cyclic oligosaccharides which are interesting as drug delivery systems, because they can be used as containers for pharmaceutical substances. We studied the Ludwig-Soret effect of [Formula: see text]-, [Formula: see text]-, [Formula: see text]- and methyl-[Formula: see text]-cyclodextrin in water and formamide by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). In water the Soret coefficient, S T, of [Formula: see text]-, [Formula: see text]- and [Formula: see text]-cyclodextrin increases with increasing temperature and shows a sign change from negative to positive around T = 35 ° C, while S T of methyl-[Formula: see text]-cyclodextrin is positive in the entire investigated temperature. In formamide S T-values of all cyclodextrins coincide and show a slight decrease with temperature. We discuss the obtained results and relate the S T-values to the different hydrogen bonding capabilities of the cyclodextrins and the used solvents. It turns out that the change of S T with temperature correlates with the partition coefficient, logP, which indicates that more hydrophilic substances show a more pronounced temperature sensitivity of S T. Additionally we obtained a surprising result measuring the refractive index contrast factor with temperature, [Formula: see text] of cyclodextrins in formamide, which might be explained by a complex formation between cyclodextrins and formamide.


Assuntos
Ciclodextrinas/química , Difusão , Formamidas/química , Modelos Químicos , Temperatura , Água/química , Coloides/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Oligossacarídeos/química , Solventes/química , Eletricidade Estática
17.
Eur Phys J E Soft Matter ; 39(12): 129, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28000048

RESUMO

We study the thermodiffusion behavior of spherical polystyrene beads with a diameter of 25 nm by infrared thermal diffusion Forced Rayleigh Scattering (IR-TDFRS). Similar beads were used to investigate the radial dependence of the Soret coefficient by different authors. While Duhr and Braun (Proc. Natl. Acad. Sci. U.S.A. 104, 9346 (2007)) observed a quadratic radial dependence Braibanti et al. (Phys. Rev. Lett. 100, 108303 (2008)) found a linear radial dependence of the Soret coefficient. We demonstrated that special care needs to be taken to obtain reliable thermophoretic data, because the measurements are very sensitive to surface properties. The colloidal particles were characterized by transmission electron microscopy and dynamic light scattering (DLS) experiments were performed. We carried out systematic thermophoretic measurements as a function of temperature, buffer and surfactant concentration. The temperature dependence was analyzed using an empirical formula. To describe the Debye length dependence we used a theoretical model by Dhont. The resulting surface charge density is in agreement with previous literature results. Finally, we analyze the dependence of the Soret coefficient on the concentration of the anionic surfactant sodium dodecyl sulfate (SDS), applying an empirical thermodynamic approach accounting for chemical contributions.

18.
J Chem Phys ; 143(12): 124504, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26429021

RESUMO

The thermal diffusion, also called the Ludwig-Soret effect, of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol is investigated as a function of temperature by thermal diffusion forced Rayleigh scattering. The Soret coefficient, ST, and the thermal diffusion coefficient, DT, show a linear temperature dependence for all studied compounds in the investigated temperature range. The magnitudes and the slopes of ST and DT vary with the chemical structure of the solute molecules. All studied molecules contain ether and/or hydroxyl groups, which can act as acceptor or donor to form hydrogen bonds, respectively. By introducing the number of donor and acceptor sites of each solute molecule, we can express their hydrogen bond capability. ST and DT can be described by an empirical equation depending on the difference of donor minus acceptor sites and the molecular weight of the solute molecule.

19.
Eur Phys J E Soft Matter ; 37(10): 94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25339283

RESUMO

The thermal diffusion of aqueous solutions of mono-, di-ethylene glycols, poly(ethylene glycol), methanol, and glycerol is investigated systematically as a function of concentration using the Thermal Diffusion Forced Rayleigh Scattering (TDFRS). For all investigated binary mixtures, the Soret coefficient, S(T), decays with increasing concentration of the non-aqueous component showing two regions. For aqueous solution of ethylene glycol, at a very low solute content the decay is steep, while it becomes less steep for higher solute concentration. All mixtures show a sign change of S(T) with concentration. The sign change concentration is discussed with respect to chemical structures of solute molecules and the partition coefficient, log p. It turns out that the number of hydroxyl groups plays an important role. For the investigated aqueous mixtures, we find empirical linear relations between the sign change concentration and the ratio of the number of hydroxyl groups to the number of carbon atoms as well as the partition coefficient, log p.

20.
Eur Phys J E Soft Matter ; 37(11): 106, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25376978

RESUMO

In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA