Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(26): 10121-10125, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966381

RESUMO

The first chemical synthesis of the phloroglucinol meroterpenoid cleistocaltone A (1) is presented. This compound, previously isolated from Cleistocalyx operculatus was reported to show promising antiviral properties. Based on a modified biosynthesis proposal, a synthetic strategy was devised featuring an intramolecular Diels-Alder reaction and an epoxidation/elimination sequence to generate the allyl alcohol handle in the side chain. The strategy was successfully executed and synthetic cleistcaltone A was evaluated against a contemporary RSV-A strain.

2.
Mol Plant ; 16(12): 1951-1961, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37897038

RESUMO

The diterpenoid paclitaxel (Taxol) is a chemotherapy medication widely used as a first-line treatment against several types of solid cancers. The supply of paclitaxel from natural sources is limited. However, missing knowledge about the genes involved in several specific metabolic steps of paclitaxel biosynthesis has rendered it difficult to engineer the full pathway. In this study, we used a combination of transcriptomics, cell biology, metabolomics, and pathway reconstitution to identify the complete gene set required for the heterologous production of paclitaxel. We identified the missing steps from the current model of paclitaxel biosynthesis and confirmed the activity of most of the missing enzymes via heterologous expression in Nicotiana benthamiana. Notably, we identified a new C4ß-C20 epoxidase that could overcome the first bottleneck of metabolic engineering. We used both previously characterized and newly identified oxomutases/epoxidases, taxane 1ß-hydroxylase, taxane 9α-hydroxylase, taxane 9α-dioxygenase, and phenylalanine-CoA ligase, to successfully biosynthesize the key intermediate baccatin III and to convert baccatin III into paclitaxel in N. benthamiana. In combination, these approaches establish a metabolic route to taxoid biosynthesis and provide insights into the unique chemistry that plants use to generate complex bioactive metabolites.


Assuntos
Biologia Sintética , Taxoides , Paclitaxel , Oxigenases de Função Mista
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA