Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(9): 3189-3203, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574200

RESUMO

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.


Assuntos
Corpo Estriado , Neurônios Dopaminérgicos , Substância Negra , Animais , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/metabolismo , Substância Negra/patologia , Substância Negra/metabolismo , Camundongos , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Camundongos Transgênicos , DNA Mitocondrial/genética , Atividade Motora/fisiologia , Mutação , DNA Helicases/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Masculino , Dopamina/metabolismo
2.
PLoS Genet ; 16(12): e1009242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315859

RESUMO

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.


Assuntos
DNA Mitocondrial/genética , Deleção de Genes , Duplicação Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , DNA Mitocondrial/química , Sequenciamento de Nucleotídeos em Larga Escala/normas , Camundongos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas
3.
J Neurosci ; 40(9): 1975-1986, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32005765

RESUMO

Mitochondrial dysfunction is critically involved in Parkinson's disease, characterized by loss of dopaminergic neurons (DaNs) in the substantia nigra (SNc), whereas DaNs in the neighboring ventral tegmental area (VTA) are much less affected. In contrast to VTA, SNc DaNs engage calcium channels to generate action potentials, which lead to oxidant stress by yet unknown pathways. To determine the molecular mechanisms linking calcium load with selective cell death in the presence of mitochondrial deficiency, we analyzed the mitochondrial redox state and the mitochondrial membrane potential in mice of both sexes with genetically induced, severe mitochondrial dysfunction in DaNs (MitoPark mice), at the same time expressing a redox-sensitive GFP targeted to the mitochondrial matrix. Despite mitochondrial insufficiency in all DaNs, exclusively SNc neurons showed an oxidized redox-system, i.e., a low reduced/oxidized glutathione (GSH-GSSG) ratio. This was mimicked by cyanide, but not by rotenone or antimycin A, making the involvement of reactive oxygen species rather unlikely. Surprisingly, a high mitochondrial inner membrane potential was maintained in MitoPark SNc DaNs. Antagonizing calcium influx into the cell and into mitochondria, respectively, rescued the disturbed redox ratio and induced further hyperpolarization of the inner mitochondrial membrane. Our data therefore show that the constant calcium load in SNc DaNs is counterbalanced by a high mitochondrial inner membrane potential, even under conditions of severe mitochondrial dysfunction, but triggers a detrimental imbalance in the mitochondrial redox system, which will lead to neuron death. Our findings thus reveal a new mechanism, redox imbalance, which underlies the differential vulnerability of DaNs to mitochondrial defects.SIGNIFICANCE STATEMENT Parkinson's disease is characterized by the preferential degeneration of dopaminergic neurons (DaNs) of the substantia nigra pars compacta (SNc), resulting in the characteristic hypokinesia in patients. Ubiquitous pathological triggers cannot be responsible for the selective neuron loss. Here we show that mitochondrial impairment together with elevated calcium burden destabilize the mitochondrial antioxidant defense only in SNc DaNs, and thus promote the increased vulnerability of this neuron population.


Assuntos
Antioxidantes/metabolismo , Cálcio/toxicidade , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Animais , Calbindina 1/metabolismo , Morte Celular , Cianetos/toxicidade , Feminino , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Membranas Mitocondriais/metabolismo , Oxirredução , Estresse Oxidativo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia
4.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039582

RESUMO

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


Assuntos
Mitocôndrias/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Adulto , Biomarcadores , Fibroblastos/metabolismo , Predisposição Genética para Doença , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/metabolismo , Modelos Biológicos , Linhagem , Fenótipo , Sequenciamento do Exoma
5.
Carcinogenesis ; 41(12): 1735-1745, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32255484

RESUMO

Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma (cHL) cell lines harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady-state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knockdown of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.


Assuntos
Carcinogênese/patologia , DNA Mitocondrial/genética , Doença de Hodgkin/patologia , Mutação , Biogênese de Organelas , Animais , Apoptose , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação Oxidativa , Células de Reed-Sternberg , Ensaios Antitumorais Modelo de Xenoenxerto
6.
EMBO J ; 35(23): 2566-2583, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27797820

RESUMO

Despite being one of the most studied proteases in bacteria, very little is known about the role of ClpXP in mitochondria. We now present evidence that mammalian CLPP has an essential role in determining the rate of mitochondrial protein synthesis by regulating the level of mitoribosome assembly. Through a proteomic approach and the use of a catalytically inactive CLPP, we produced the first comprehensive list of possible mammalian ClpXP substrates involved in the regulation of mitochondrial translation, oxidative phosphorylation, and a number of metabolic pathways. We further show that the defect in mitoribosomal assembly is a consequence of the accumulation of ERAL1, a putative 12S rRNA chaperone, and novel ClpXP substrate. The presented data suggest that the timely removal of ERAL1 from the small ribosomal subunit is essential for the efficient maturation of the mitoribosome and a normal rate of mitochondrial translation.


Assuntos
Endopeptidase Clp/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Animais , Células Cultivadas , Fibroblastos/fisiologia , Camundongos , Camundongos Knockout , Biossíntese de Proteínas
7.
Biochem Biophys Res Commun ; 493(1): 604-610, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867191

RESUMO

BACKGROUND: During aging a mosaic of normal cells and cells with mitochondrial deficiency develops in various tissues including the heart. Whether this contributes to higher susceptibility for arrhythmia following myocardial infarction (MI) is unknown. METHODS AND RESULTS: Myocardial cryoinfarction was performed in 12-month-old transgenic mice with accelerated accumulation of deletions in mitochondrial DNA. Occurrence and pathogenesis of arrhythmia was investigated after two weeks. Holter-ECG recordings revealed higher rates of premature ventricular complexes (incidence > 10/24 h: 100% vs. 20%; p = 0.048) and more severe spontaneous arrhythmia during stress test in mutant mice with MI as compared to control mice with MI. Mice with mitochondrial dysfunction exhibited longer spontaneous AV-blocks (467 ± 26 ms vs. 377 ± 24 ms; p = 0.013), an increased probability for induction of ventricular tachycardia during in vivo electrophysiological investigation (22% vs. 9%; p = 0.044), and a reduced conduction velocity in the infarct borderzone (38.5 ± 0.5 cm/s vs. 55.3 ± 0.9 cm/s; p = 0.001). Furthermore, mutant mice exhibited a significant reduction of the phospho-Cx43/Cx43 ratio in right (0.59 ± 0.04 vs. 0.85 ± 0.01; p = 0.027) and left ventricular myocardium (0.72 ± 0.01 vs. 0.86 ± 0.02; p = 0.023). CONCLUSIONS: Aging-related cardiac mosaic respiratory chain dysfunction facilitates the occurrence of spontaneous and inducible cardiac arrhythmia after myocardial infarction and is associated with slowing of electrical impulse propagation in the infarct borderzone.


Assuntos
Envelhecimento , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Mitocôndrias Cardíacas , Doenças Mitocondriais/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Mitocondriais/complicações , Infarto do Miocárdio/complicações
9.
Int J Mol Sci ; 18(6)2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556799

RESUMO

Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR)+/--insulin receptor substrate-1 (IRS-1)+/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Receptor de Insulina/metabolismo , Animais , Glicemia/metabolismo , Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Fígado/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Receptor de Insulina/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
EMBO J ; 31(5): 1293-307, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22252130

RESUMO

Respiratory chain (RC) complexes are organized into supercomplexes forming 'respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly.


Assuntos
Proteases Dependentes de ATP/metabolismo , Códon sem Sentido , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Células Cultivadas , Ciclo-Oxigenase 1/química , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Estabilidade Enzimática , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica
11.
Brain ; 137(Pt 2): 354-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24163249

RESUMO

Accumulation of mitochondrial DNA deletions is observed especially in dopaminergic neurons of the substantia nigra during ageing and even more in Parkinson's disease. The resulting mitochondrial dysfunction is suspected to play an important role in neurodegeneration. However, the molecular mechanisms involved in the preferential generation of mitochondrial DNA deletions in dopaminergic neurons are still unknown. To study this phenomenon, we developed novel polymerase chain reaction strategies to detect distinct mitochondrial DNA deletions and monitor their accumulation patterns. Applying these approaches in in vitro and in vivo models, we show that catecholamine metabolism drives the generation and accumulation of these mitochondrial DNA mutations. As in humans, age-related accumulation of mitochondrial DNA deletions is most prominent in dopaminergic areas of mouse brain and even higher in the catecholaminergic adrenal medulla. Dopamine treatment of terminally differentiated neuroblastoma cells, as well as stimulation of dopamine turnover in mice over-expressing monoamine oxidase B both induce multiple mitochondrial DNA deletions. Our results thus identify catecholamine metabolism as the driving force behind mitochondrial DNA deletions, probably being an important factor in the ageing-associated degeneration of dopaminergic neurons.


Assuntos
Catecolaminas/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Deleção de Genes , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL
12.
Nucleic Acids Res ; 41(21): 9848-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23982517

RESUMO

Mitochondrial topoisomerase I is a genetically distinct mitochondria-dedicated enzyme with a crucial but so far unknown role in the homeostasis of mitochondrial DNA metabolism. Here, we present data suggesting a negative regulatory function in mitochondrial transcription or transcript stability. Deficiency or depletion of mitochondrial topoisomerase I increased mitochondrial transcripts, whereas overexpression lowered mitochondrial transcripts, depleted respiratory complexes I, III and IV, decreased cell respiration and raised superoxide levels. Acute depletion of mitochondrial topoisomerase I triggered neither a nuclear mito-biogenic stress response nor compensatory topoisomerase IIß upregulation, suggesting the concomitant increase in mitochondrial transcripts was due to release of a local inhibitory effect. Mitochondrial topoisomerase I was co-immunoprecipitated with mitochondrial RNA polymerase. It selectively accumulated and rapidly exchanged at a subset of nucleoids distinguished by the presence of newly synthesized RNA and/or mitochondrial RNA polymerase. The inactive Y559F-mutant behaved similarly without affecting mitochondrial transcripts. In conclusion, mitochondrial topoisomerase I dampens mitochondrial transcription and thereby alters respiratory capacity. The mechanism involves selective association of the active enzyme with transcriptionally active nucleoids and a direct interaction with mitochondrial RNA polymerase. The inhibitory role of topoisomerase I in mitochondrial transcription is strikingly different from the stimulatory role of topoisomerase I in nuclear transcription.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/enzimologia , Mitocôndrias/genética , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Camundongos , Mitocôndrias/metabolismo , RNA/metabolismo , RNA Mitocondrial
13.
J Hepatol ; 60(4): 816-23, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24291365

RESUMO

BACKGROUND & AIMS: To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS: Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS: HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS: Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Tipo 2/fisiopatologia , Resistência à Insulina/fisiologia , Mitocôndrias Hepáticas/fisiologia , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/fisiopatologia , Expressão Gênica , Proteínas Substratos do Receptor de Insulina/deficiência , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Canais Iônicos/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Fosforilação Oxidativa , Força Próton-Motriz , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Proteína Desacopladora 2
14.
Eur J Cell Biol ; 103(2): 151399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412640

RESUMO

Desmin gene mutations cause myopathies and cardiomyopathies. Our previously characterised R349P desminopathy mice, which carry the ortholog of the common human desmin mutation R350P, showed marked alterations in mitochondrial morphology and function in muscle tissue. By isolating skeletal muscle myoblasts from offspring of R349P desminopathy and p53 knock-out mice, we established an immortalised cellular disease model. Heterozygous and homozygous R349P desmin knock-in and wild-type myoblasts could be well differentiated into multinucleated spontaneously contracting myotubes. The desminopathy myoblasts showed the characteristic disruption of the desmin cytoskeleton and desmin protein aggregation, and the desminopathy myotubes showed the characteristic myofibrillar irregularities. Long-term electrical pulse stimulation promoted myotube differentiation and markedly increased their spontaneous contraction rate. In both heterozygous and homozygous R349P desminopathy myotubes, this treatment restored a regular myofibrillar cross-striation pattern as seen in wild-type myotubes. High-resolution respirometry of mitochondria purified from myotubes by density gradient ultracentrifugation revealed normal oxidative phosphorylation capacity, but a significantly reduced proton leak in mitochondria from the homozygous R349P desmin knock-in cells. Consistent with a reduced proton flux across the inner mitochondrial membrane, our quantitative proteomic analysis of the purified mitochondria revealed significantly reduced levels of ADP/ATP translocases in the homozygous R349P desmin knock-in genotype. As this alteration was also detected in the soleus muscle of R349P desminopathy mice, which, in contrast to the mitochondria purified from cultured cells, showed a variety of other dysregulated mitochondrial proteins, we consider this finding to be an early step in the pathogenesis of secondary mitochondriopathy in desminopathy.


Assuntos
Desmina , Fibras Musculares Esqueléticas , Animais , Desmina/metabolismo , Desmina/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Técnicas de Introdução de Genes , Prótons , Mitocôndrias/metabolismo , Distrofias Musculares , Cardiomiopatias
15.
Matrix Biol ; 132: 72-86, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009171

RESUMO

Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.


Assuntos
Bleomicina , Diferenciação Celular , DNA Mitocondrial , Fibrose , Mutação , Miofibroblastos , Animais , Bleomicina/efeitos adversos , Bleomicina/toxicidade , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Miofibroblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Tamoxifeno/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Humanos , Pele/patologia , Pele/metabolismo , Pele/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Colágeno Tipo I
16.
Stem Cells ; 29(9): 1459-68, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21780252

RESUMO

Tissue stem cells and germ line or embryonic stem cells were shown to have reduced oxidative metabolism, which was proposed to be an adaptive mechanism to reduce damage accumulation caused by reactive oxygen species. However, an alternate explanation is that stem cells are less dependent on specialized cytoplasmic functions compared with differentiated cells, therefore, having a high nuclear-to-cytoplasmic volume ratio and consequently a low mitochondrial content. To determine whether stem cells rely or not on mitochondrial respiration, we selectively ablated the electron transport chain in the basal layer of the epidermis, which includes the epidermal progenitor/stem cells (EPSCs). This was achieved using a loxP-flanked mitochondrial transcription factor A (Tfam) allele in conjunction with a keratin 14 Cre transgene. The epidermis of these animals (Tfam(EKO)) showed a profound depletion of mitochondrial DNA and complete absence of respiratory chain complexes. However, despite a short lifespan due to malnutrition, epidermal development and skin barrier function were not impaired. Differentiation of epidermal layers was normal and no proliferation defect or major increase of apoptosis could be observed. In contrast, mice with an epidermal ablation of prohibitin-2, a scaffold protein in the inner mitochondrial membrane, displayed a dramatic phenotype observable already in utero, with severely impaired skin architecture and barrier function, ultimately causing death from dehydration shortly after birth. In conclusion, we here provide unequivocal evidence that EPSCs, and probably tissue stem cells in general, are independent of the mitochondrial respiratory chain, but still require a functional dynamic mitochondrial compartment.


Assuntos
Células Epidérmicas , Mitocôndrias/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transporte de Elétrons , Epiderme/metabolismo , Genótipo , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Espécies Reativas de Oxigênio/metabolismo
17.
Neurol Genet ; 8(2): e660, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35252560

RESUMO

BACKGROUND AND OBJECTIVES: We report the pathogenic sequence variant m.5789T>C in the anticodon stem of the mitochondrial tRNA for cysteine as a novel cause of neuropathy, ataxia, and retinitis pigmentosa (NARP), which is usually associated with pathogenic variants in the MT-ATP6 gene. METHODS: To address the correlation of oxidative phosphorylation deficiency with mutation loads, we performed genotyping on single laser-dissected skeletal muscle fibers. Stability of the mitochondrial tRNACys was investigated by Northern blotting. Accompanying deletions of the mitochondrial genome were detected by long-range PCR and their breakpoints were determined by sequencing of single-molecule amplicons. RESULTS: The sequence variant m.5789T>C, originating from the patient's mother, decreases the stability of the mitochondrial tRNA for cysteine by disrupting the anticodon stem, which subsequently leads to a combined oxidative phosphorylation deficiency. In parallel, we observed a prominent cluster of low-abundance somatic deletions with breakpoints in the immediate vicinity of the m.5789T>C variant. Strikingly, all deletion-carrying mitochondrial DNA (mtDNA) species, in which the corresponding nucleotide position was not removed, harbored the mutant allele, and none carried the wild-type allele. DISCUSSION: In addition to providing evidence for the novel association of a tRNA sequence alteration with NARP syndrome, our observations support the hypothesis that single nucleotide changes can lead to increased occurrence of site-specific mtDNA deletions through the formation of an imperfect repeat. This finding might be relevant for understanding mechanisms of deletion generation in the human mitochondrial genome.

18.
J Cachexia Sarcopenia Muscle ; 13(4): 2132-2145, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35765148

RESUMO

BACKGROUND: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS: We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS: K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS: Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.


Assuntos
Sarcopenia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Regeneração , Sarcopenia/patologia
19.
Nat Commun ; 13(1): 6704, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344526

RESUMO

Understanding the mechanisms governing selective turnover of mutation-bearing mtDNA is fundamental to design therapeutic strategies against mtDNA diseases. Here, we show that specific mtDNA damage leads to an exacerbated mtDNA turnover, independent of canonical macroautophagy, but relying on lysosomal function and ATG5. Using proximity labeling and Twinkle as a nucleoid marker, we demonstrate that mtDNA damage induces membrane remodeling and endosomal recruitment in close proximity to mitochondrial nucleoid sub-compartments. Targeting of mitochondrial nucleoids is controlled by the ATAD3-SAMM50 axis, which is disrupted upon mtDNA damage. SAMM50 acts as a gatekeeper, influencing BAK clustering, controlling nucleoid release and facilitating transfer to endosomes. Here, VPS35 mediates maturation of early endosomes to late autophagy vesicles where degradation occurs. In addition, using a mouse model where mtDNA alterations cause impairment of muscle regeneration, we show that stimulation of lysosomal activity by rapamycin, selectively removes mtDNA deletions without affecting mtDNA copy number, ameliorating mitochondrial dysfunction. Taken together, our data demonstrates that upon mtDNA damage, mitochondrial nucleoids are eliminated outside the mitochondrial network through an endosomal-mitophagy pathway. With these results, we unveil the molecular players of a complex mechanism with multiple potential benefits to understand mtDNA related diseases, inherited, acquired or due to normal ageing.


Assuntos
DNA Mitocondrial , Membranas Mitocondriais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitofagia
20.
Cell Rep ; 39(10): 110912, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675769

RESUMO

To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.


Assuntos
Ciclo do Ácido Cítrico , Imunidade Humoral , Animais , Linfócitos B , DNA Mitocondrial/metabolismo , Glicólise/genética , Lipopolissacarídeos/metabolismo , Camundongos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA