Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioinformatics ; 36(6): 1801-1806, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642507

RESUMO

MOTIVATION: When metabolites are analyzed by electrospray ionization (ESI)-mass spectrometry, they are usually detected as multiple ion species due to the presence of isotopes, adducts and in-source fragments. The signals generated by these degenerate features (along with contaminants and other chemical noise) obscure meaningful patterns in MS data, complicating both compound identification and downstream statistical analysis. To address this problem, we developed Binner, a new tool for the discovery and elimination of many degenerate feature signals typically present in untargeted ESI-LC-MS metabolomics data. RESULTS: Binner generates feature annotations and provides tools to help users visualize informative feature relationships that can further elucidate the underlying structure of the data. To demonstrate the utility of Binner and to evaluate its performance, we analyzed data from reversed phase LC-MS and hydrophilic interaction chromatography (HILIC) platforms and demonstrated the accuracy of selected annotations using MS/MS. When we compared Binner annotations of 75 compounds previously identified in human plasma samples with annotations generated by three similar tools, we found that Binner achieves superior performance in the number and accuracy of annotations while simultaneously minimizing the number of incorrectly annotated principal ions. Data reduction and pattern exploration with Binner have allowed us to catalog a number of previously unrecognized complex adducts and neutral losses generated during the ionization of molecules in LC-MS. In summary, Binner allows users to explore patterns in their data and to efficiently and accurately eliminate a significant number of the degenerate features typically found in various LC-MS modalities. AVAILABILITY AND IMPLEMENTATION: Binner is written in Java and is freely available from http://binner.med.umich.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Íons , Espectrometria de Massas por Ionização por Electrospray
2.
Bioinformatics ; 35(18): 3441-3452, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30887029

RESUMO

MOTIVATION: Functional enrichment testing methods can reduce data comprising hundreds of altered biomolecules to smaller sets of altered biological 'concepts' that help generate testable hypotheses. This study leveraged differential network enrichment analysis methodology to identify and validate lipid subnetworks that potentially differentiate chronic kidney disease (CKD) by severity or progression. RESULTS: We built a partial correlation interaction network, identified highly connected network components, applied network-based gene-set analysis to identify differentially enriched subnetworks, and compared the subnetworks in patients with early-stage versus late-stage CKD. We identified two subnetworks 'triacylglycerols' and 'cardiolipins-phosphatidylethanolamines (CL-PE)' characterized by lower connectivity, and a higher abundance of longer polyunsaturated triacylglycerols in patients with severe CKD (stage ≥4) from the Clinical Phenotyping Resource and Biobank Core. These finding were replicated in an independent cohort, the Chronic Renal Insufficiency Cohort. Using an innovative method for elucidating biological alterations in lipid networks, we demonstrated alterations in triacylglycerols and cardiolipins-phosphatidylethanolamines that precede the clinical outcome of end-stage kidney disease by several years. AVAILABILITY AND IMPLEMENTATION: A complete list of NetGSA results in HTML format can be found at http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html. The DNEA is freely available at https://github.com/wiggie/DNEA. Java wrapper leveraging the cytoscape.js framework is available at http://js.cytoscape.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Insuficiência Renal Crônica , Feminino , Humanos , Lipídeos , Masculino
3.
Nutrients ; 13(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34684365

RESUMO

As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age, studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT, classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8-17 years, BMI percentile 5-85%) and overweight and obese (OVOB, n = 228, aged 8-17 years, BMI percentile ≥ 85%). Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines, and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the metabolome dynamics in response to a glucose challenge.


Assuntos
Jejum/metabolismo , Comportamento Alimentar , Resistência à Insulina , Metaboloma , Obesidade/metabolismo , Caracteres Sexuais , Adolescente , Glicemia/metabolismo , Criança , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Cinética , Masculino , Obesidade/sangue
4.
Metabolites ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255384

RESUMO

Modern analytical methods allow for the simultaneous detection of hundreds of metabolites, generating increasingly large and complex data sets. The analysis of metabolomics data is a multi-step process that involves data processing and normalization, followed by statistical analysis. One of the biggest challenges in metabolomics is linking alterations in metabolite levels to specific biological processes that are disrupted, contributing to the development of disease or reflecting the disease state. A common approach to accomplishing this goal involves pathway mapping and enrichment analysis, which assesses the relative importance of predefined metabolic pathways or other biological categories. However, traditional knowledge-based enrichment analysis has limitations when it comes to the analysis of metabolomics and lipidomics data. We present a Java-based, user-friendly bioinformatics tool named Filigree that provides a primarily data-driven alternative to the existing knowledge-based enrichment analysis methods. Filigree is based on our previously published differential network enrichment analysis (DNEA) methodology. To demonstrate the utility of the tool, we applied it to previously published studies analyzing the metabolome in the context of metabolic disorders (type 1 and 2 diabetes) and the maternal and infant lipidome during pregnancy.

5.
Genet Epidemiol ; 30(4): 320-32, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16832873

RESUMO

The calculation of empirical p-values for genome-wide non-parametric linkage tests continues to present significant computational challenges for many complex disease mapping studies. The gold standard approach is to use gene dropping to simulate null genome scans. Unfortunately, this approach is too computationally expensive for many data sets of interest. An alternative, more efficient method for sampling null genome scans is to pre-calculate pools of family-specific statistics and then resample from these replicate pools to generate "pseudo-replicate" genome scans. In this study, we use simulations to explore properties of the replicate pool p-value estimator pRP and show that it provides an excellent approximation to the traditional gene-dropping estimator for significantly less computational effort. While the computational efficiency of the replicate pool estimator is noticeable in almost all data sets, by applying the replicate pool method to several previously characterized data sets we show that savings in computational effort can be especially significant (on the order of 10,000-fold or more) when one or more large families are analyzed. We also estimate replicate pool p-values for the schizophrenia data described by Abecasis et al. and show that pRP closely approximates gene-drop p-values for all linkage peaks reported for this study. Lastly, we expand upon Song et al.'s previous work by deriving a conservative estimator of the variance for PRP that can easily be computed in practical settings. We have implemented the replicate pool method along with our variance estimator in a new program called Pseudo, which is the first widely available automated implementation of the replicate pool method.


Assuntos
Ligação Genética , Genoma , Modelos Genéticos , Método de Monte Carlo , Análise de Variância , Modelos de Riscos Proporcionais , Estatísticas não Paramétricas
6.
Am J Hum Genet ; 77(5): 754-67, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16252236

RESUMO

Single-nucleotide polymorphisms (SNPs) are rapidly replacing microsatellites as the markers of choice for genetic linkage studies and many other studies of human pedigrees. Here, we describe an efficient approach for modeling linkage disequilibrium (LD) between markers during multipoint analysis of human pedigrees. Using a gene-counting algorithm suitable for pedigree data, our approach enables rapid estimation of allele and haplotype frequencies within clusters of tightly linked markers. In addition, with the use of a hidden Markov model, our approach allows for multipoint pedigree analysis with large numbers of SNP markers organized into clusters of markers in LD. Simulation results show that our approach resolves previously described biases in multipoint linkage analysis with SNPs that are in LD. An updated version of the freely available Merlin software package uses the approach described here to perform many common pedigree analyses, including haplotyping and haplotype frequency estimation, parametric and nonparametric multipoint linkage analysis of discrete traits, variance-components and regression-based analysis of quantitative traits, calculation of identity-by-descent or kinship coefficients, and case selection for follow-up association studies. To illustrate the possibilities, we examine a data set that provides evidence of linkage of psoriasis to chromosome 17.


Assuntos
Algoritmos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Psoríase/genética , Cromossomos Humanos Par 17/genética , Simulação por Computador , Marcadores Genéticos/genética , Humanos , Cadeias de Markov , Linhagem
7.
Bioinformatics ; 21(16): 3445-7, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15947021

RESUMO

We describe a tool that produces summary statistics and basic quality assessments for gene-mapping data, accommodating either pedigree or case-control datasets. Our tool can also produce graphic output in the PDF format.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Modelos Genéticos , Análise de Sequência de DNA/métodos , Software , Interface Usuário-Computador , Gráficos por Computador , Interpretação Estatística de Dados , Modelos Estatísticos , Controle de Qualidade
8.
Am J Hum Genet ; 76(5): 887-93, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15789306

RESUMO

Deviations from Hardy-Weinberg equilibrium (HWE) can indicate inbreeding, population stratification, and even problems in genotyping. In samples of affected individuals, these deviations can also provide evidence for association. Tests of HWE are commonly performed using a simple chi2 goodness-of-fit test. We show that this chi2 test can have inflated type I error rates, even in relatively large samples (e.g., samples of 1,000 individuals that include approximately 100 copies of the minor allele). On the basis of previous work, we describe exact tests of HWE together with efficient computational methods for their implementation. Our methods adequately control type I error in large and small samples and are computationally efficient. They have been implemented in freely available code that will be useful for quality assessment of genotype data and for the detection of genetic association or population stratification in very large data sets.


Assuntos
Genética Populacional , Modelos Genéticos , Estatística como Assunto , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA