Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 42(9): 2633-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26370007

RESUMO

N-Methyl-D-aspartate glutamate receptors (NMDARs) contribute to neural development, plasticity and survival, but they are also linked with neurodegeneration. NMDARs at synapses are activated by coincident glutamate release and depolarization. NMDARs distal to synapses can sometimes be recruited by 'spill-over' of glutamate during high-frequency synaptic stimulation or when glutamate uptake is compromised, and this influences the shape of NMDAR-mediated postsynaptic responses. In substantia nigra dopamine neurons, activation of NMDARs beyond the synapse during different frequencies of presynaptic stimulation has not been explored, even though excitatory afferents from the subthalamic nucleus show a range of firing frequencies, and these frequencies change in human and experimental Parkinson's disease. This study reports that high-frequency stimulation (80 Hz/200 ms) evoked NMDAR-excitatory postsynaptic currents (EPSCs) that were larger and longer lasting than those evoked by single stimuli at low frequency (0.1 Hz). MK-801, which irreversibly blocked NMDAR-EPSCs activated during 0.1-Hz stimulation, left a proportion of NMDAR-EPSCs that could be activated by 80-Hz stimulation and that may represent activity of NMDARs distal to synapses. TBOA, which blocks glutamate transporters, significantly increased NMDAR-EPSCs in response to 80-Hz stimulation, particularly when metabotropic glutamate receptors (mGluRs) were also blocked, indicating that recruitment of NMDARs distal to synapses is regulated by glutamate transporters and mGluRs. These regulatory mechanisms may be essential in the substantia nigra for restricting glutamate diffusion from synaptic sites and keeping NMDAR-EPSCs in dopamine neurons relatively small and fast. Failure of glutamate transporters may contribute to the declining health of dopamine neurons during pathological conditions.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Substância Negra/fisiologia , Sinapses/fisiologia , Aminoácidos/farmacologia , Animais , Ácido Aspártico/farmacologia , Maleato de Dizocilpina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Xantenos/farmacologia
2.
Neuropharmacology ; 73: 138-46, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23727219

RESUMO

NMDA glutamate receptors (NMDARs) have critical functional roles in the nervous system but NMDAR over-activity can contribute to neuronal damage. The open channel NMDAR blocker, memantine is used to treat certain neurodegenerative diseases, including Parkinson's disease (PD) and is well tolerated clinically. We have investigated memantine block of NMDARs in substantia nigra pars compacta (SNc) dopamine neurones, which show severe pathology in PD. Memantine (10 µM) caused robust inhibition of whole-cell (synaptic and extrasynaptic) NMDARs activated by NMDA at a high concentration or a long duration, low concentration. Less memantine block of NMDAR-EPSCs was seen in response to low frequency synaptic stimulation, while responses to high frequency synaptic stimulation were robustly inhibited by memantine; thus memantine inhibition of NMDAR-EPSCs showed frequency-dependence. By contrast, MK-801 (10 µM) inhibition of NMDAR-EPSCs was not significantly different at low versus high frequencies of synaptic stimulation. Using immunohistochemistry, confocal imaging and stereological analysis, NMDA was found to reduce the density of cells expressing tyrosine hydroxylase, a marker of viable dopamine neurones; memantine prevented the NMDA-evoked decrease. In conclusion, memantine blocked NMDAR populations in different subcellular locations in SNc dopamine neurones but the degree of block depended on the intensity of agonist presentation at the NMDAR. This profile may contribute to the beneficial effects of memantine in PD, as glutamatergic activity is reported to increase, and memantine could preferentially reduce over-activity while leaving some physiological signalling intact.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Memantina/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Substância Negra/efeitos dos fármacos , Animais , Contagem de Células , Maleato de Dizocilpina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Memantina/farmacologia , N-Metilaspartato/farmacologia , Degeneração Neural/prevenção & controle , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Substância Negra/metabolismo , Substância Negra/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA