Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Neurosci ; 14: 287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322187

RESUMO

In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 433-442, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30670192

RESUMO

Phospholipase Cß (PLCß)-induced depletion of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) transduces a plethora of signals into cellular responses. Importance and diversity of PI(4,5)P2-dependent processes led to strong need for biosensors of physiological PI(4,5)P2 dynamics applicable in live-cell experiments. Membrane PI(4,5)P2 can be monitored with fluorescently-labelled phosphoinositide (PI) binding domains that associate to the membrane depending on PI(4,5)P2 levels. The pleckstrin homology domain of PLCδ1 (PLCδ1-PH) and the C-terminus of tubby protein (tubbyCT) are two such sensors widely used to study PI(4,5)P2 signaling. However, certain limitations apply to both: PLCδ1-PH binds cytoplasmic inositol-1,4,5-trisphosphate (IP3) produced from PI(4,5)P2 through PLCß, and tubbyCT responses do not faithfully report on PLCß-dependent PI(4,5)P2 dynamics. In searching for an improved biosensor, we fused N-terminal homology domain of Epsin1 (ENTH) to GFP and examined use of this construct as genetically-encoded biosensor for PI(4,5)P2 dynamics in living cells. We utilized recombinant tools to manipulate PI or Gq protein-coupled receptors (GqPCR) to stimulate PLCß signaling and characterized PI binding properties of ENTH-GFP with total internal reflection (TIRF) and confocal microscopy. ENTH-GFP specifically recognized membrane PI(4,5)P2 without interacting with IP3, as demonstrated by dialysis of cells with the messenger through a patch pipette. Utilizing Ci-VSP to titrate PI(4,5)P2 levels, we found that ENTH-GFP had low PI(4,5)P2 affinity. Accordingly, ENTH-GFP was highly sensitive to PLCß-dependent PI(4,5)P2 depletion, and in contrast to PLCδ1-PH, overexpression of ENTH-GFP did not attenuate GqPCR signaling. Taken together, ENTH-GFP detects minute changes of PI(4,5)P2 levels and provides an important complementation of experimentally useful reporters of PI(4,5)P2 dynamics in physiological pathways.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Imunofluorescência/métodos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Fosfatidilinositóis , Fosfolipase C beta/metabolismo , Fosfolipase C beta/farmacologia , Domínios Proteicos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos
3.
Front Mol Neurosci ; 11: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29440988

RESUMO

The three members of the ether-à-go-go-gene-like (Elk; Kv12.1-Kv12.3) family of voltage-gated K+ channels are predominantly expressed in neurons, but only little information is available on their physiological relevance. It was shown that Kv12.2 channels modulate excitability of hippocampal neurons, but no native current could be attributed to Kv12.1 and Kv12.3 subunits yet. This may appear somewhat surprising, given high expression of their mRNA transcripts in several brain areas. Native Kv12 currents may have been overlooked so far due to limited knowledge on their biophysical properties and lack of specific pharmacology. Except for Kv12.2, appropriate genetically modified mouse models have not been described; therefore, identification of Kv12-mediated currents in native cell types must rely on characterization of unique properties of the channels. We focused on recombinant human Kv12.1 to identify distinct properties of these channels. We found that Kv12.1 channels exhibited significant mode shift of activation, i.e., stabilization of the voltage sensor domain in a "relaxed" open state after prolonged channel activation. This mode shift manifested by a slowing of deactivation and, most prominently, a significant shift of voltage dependence to hyperpolarized potentials. In contrast to related Kv11.1, mode shift was not sensitive to extracellular Na+, which allowed for discrimination between these isoforms. Sensitivity of Kv12.1 and Kv11.1 to the broad-spectrum K+ antagonist 4-aminopyridine was similar. However, 4-AP strongly activated Kv12.1 channels, but it was an inhibitor of Kv11 channels. Interestingly, the agonist of Kv11 channels NS1643 also differentially modulated the activity of these channels, i.e., NS1643 activated Kv11.1, but strongly inhibited Kv12.1 channels. Thus, these closely related channels are distinguished by inverse pharmacological profiles. In summary, we identified unique biophysical and pharmacological properties of Kv12.1 channels and established straightforward experimental protocols to characterize Kv12.1-mediated currents. Identification of currents in native cell types with mode shift that are activated through 4-AP and inhibited by NS1643 can provide strong evidence for contribution of Kv12.1 to whole cell currents.

4.
Br J Pharmacol ; 173(16): 2555-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27328745

RESUMO

BACKGROUND AND PURPOSE: Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines. Given the extensive use of U73122 in research, we set out to identify these U73122-sensitive ion channels. EXPERIMENTAL APPROACH: We performed detailed biophysical analysis of the U73122-induced currents in frequently used cell lines. KEY RESULTS: At concentrations required to inhibit PLC, U73122 modulated the activity of transient receptor potential melastatin (TRPM) channels through covalent modification. U73122 was shown to be a potent agonist of ubiquitously expressed TRPM4 channels and activated endogenous TRPM4 channels in CHO cells independently of PLC and of the downstream second messengers PI(4,5)P2 and Ca(2+) . U73122 also potentiated Ca(2) (+) -dependent TRPM4 currents in human Jurkat T-cells, endogenous TRPM4 in HEK293T cells and recombinant human TRPM4. In contrast to TRPM4, TRPM3 channels were inhibited whereas the closely related TRPM5 channels were insensitive to U73122, showing that U73122 exhibits high specificity within the TRPM channel family. CONCLUSIONS AND IMPLICATIONS: Given the widespread expression of TRPM4 and TRPM3 channels, these actions of U73122 must be considered when interpreting its effects on cell function. U73122 may also be useful for identifying and characterizing TRPM channels in native tissue, thus facilitating the analysis of their physiology.


Assuntos
Estrenos/farmacologia , Pirrolidinonas/farmacologia , Canais de Cátion TRPM/agonistas , Fosfolipases Tipo C/antagonistas & inibidores , Células Cultivadas , Relação Dose-Resposta a Droga , Estrenos/administração & dosagem , Células HEK293 , Humanos , Estrutura Molecular , Pirrolidinonas/administração & dosagem , Relação Estrutura-Atividade , Canais de Cátion TRPM/metabolismo , Fosfolipases Tipo C/metabolismo
5.
Nat Commun ; 5: 5540, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25420509

RESUMO

The two-pore domain potassium (K2P) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) are important determinants of background K(+) conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gαq/11 subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P2 nor release of the downstream messengers IP3 and Ca(2+). Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG-but not in downstream lipid metabolites-mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability.


Assuntos
Diglicerídeos/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Motivos de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA