Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 294, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147570

RESUMO

BACKGROUND: An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic characteristics along the uninterrupted circulation, particularly in Reunion. METHODS: Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies. RESULTS: Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016-2017 isolate from Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in NS2B, one in NS3, one in NS4B, and seven in NS5). CONCLUSION: In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose biological significance needs to be further investigated.


Assuntos
Vírus da Dengue , Dengue , Animais , Chlorocebus aethiops , Humanos , Dengue/epidemiologia , Sorogrupo , Reunião/epidemiologia , Filogenia , Seicheles , Células Vero , Surtos de Doenças , Genótipo , Sri Lanka
2.
Emerg Infect Dis ; 28(4): 895-898, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319434

RESUMO

In January 2021, after detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, genomic surveillance was established on Réunion Island to track the introduction and spread of SARS-CoV-2 lineages and variants of concern. This system identified 22 SARS-CoV-2 lineages, 71% of which were attributed to the Beta variant.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , França/epidemiologia , Humanos , Reunião/epidemiologia , SARS-CoV-2/genética
3.
Appl Environ Microbiol ; 88(9): e0027722, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442082

RESUMO

Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Proteínas de Escherichia coli/genética , Fezes , Humanos , Nova Zelândia , Fatores de Virulência/genética
4.
Clin Infect Dis ; 73(7): e1570-e1578, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32777036

RESUMO

BACKGROUND: Salmonella Enteritidis and Salmonella Typhimurium are major causes of bloodstream infection and diarrheal disease in East Africa. Sources of human infection, including the role of the meat pathway, are poorly understood. METHODS: We collected cattle, goat, and poultry meat pathway samples from December 2015 through August 2017 in Tanzania and isolated Salmonella using standard methods. Meat pathway isolates were compared with nontyphoidal serovars of Salmonella enterica (NTS) isolated from persons with bloodstream infections and diarrheal disease from 2007 through 2017 from Kenya by core genome multi-locus sequence typing (cgMLST). Isolates were characterized for antimicrobial resistance, virulence genes, and diversity. RESULTS: We isolated NTS from 164 meat pathway samples. Of 172 human NTS isolates, 90 (52.3%) from stool and 82 (47.7%) from blood, 53 (30.8%) were Salmonella Enteritidis sequence type (ST) 11 and 62 (36.0%) were Salmonella Typhimurium ST313. We identified cgMLST clusters within Salmonella Enteritidis ST11, Salmonella Heidelberg ST15, Salmonella Typhimurium ST19, and Salmonella II 42:r:- ST1208 that included both human and meat pathway isolates. Salmonella Typhimurium ST313 was isolated exclusively from human samples. Human and poultry isolates bore more antimicrobial resistance and virulence genes and were less diverse than isolates from other sources. CONCLUSIONS: Our findings suggest that the meat pathway may be an important source of human infection with some clades of Salmonella Enteritidis ST11 in East Africa, but not of human infection by Salmonella Typhimurium ST313. Research is needed to systematically examine the contributions of other types of meat, animal products, produce, water, and the environment to nontyphoidal Salmonella disease in East Africa.


Assuntos
Salmonella typhimurium , Sepse , Animais , Antibacterianos , Bovinos , Diarreia/epidemiologia , Humanos , Carne , Tipagem de Sequências Multilocus , Salmonella enteritidis/genética , Salmonella typhimurium/genética , Tanzânia
5.
J Gen Virol ; 101(12): 1261-1269, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902374

RESUMO

The recent reclassification of the Riboviria, and the introduction of multiple new taxonomic categories including both subfamilies and subgenera for coronaviruses (family Coronaviridae, subfamily Orthocoronavirinae), represents a major shift in how official classifications are used to designate specific viral lineages. While the newly defined subgenera provide much-needed standardization for commonly cited viruses of public health importance, no method has been proposed for the assignment of subgenus based on partial sequence data, or for sequences that are divergent from the designated holotype reference genomes. Here, we describe the genetic variation of a 387 nt region of the coronavirus RNA-dependent RNA polymerase (RdRp), which is one of the most used partial sequence loci for both detection and classification of coronaviruses in molecular epidemiology. We infer Bayesian phylogenies from more than 7000 publicly available coronavirus sequences and examine clade groupings relative to all subgenus holotype sequences. Our phylogenetic analyses are largely coherent with whole-genome analyses based on designated holotype members for each subgenus. Distance measures between sequences form discrete clusters between taxa, offering logical threshold boundaries that can attribute subgenus or indicate sequences that are likely to belong to unclassified subgenera both accurately and robustly. We thus propose that partial RdRp sequence data of coronaviruses are sufficient for the attribution of subgenus-level taxonomic classifications and we supply the R package, MyCoV, which provides a method for attributing subgenus and assessing the reliability of the attribution.


Assuntos
Coronavirus/classificação , Coronavirus/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Regulação Viral da Expressão Gênica , Filogenia , RNA Polimerase Dependente de RNA/genética , Recombinação Genética , Proteínas Virais/genética
6.
Emerg Infect Dis ; 25(12): 2226-2234, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742539

RESUMO

In 2014, antimicrobial drug-resistant Campylobacter jejuni sequence type 6964 emerged contemporaneously in poultry from 3 supply companies in the North Island of New Zealand and as a major cause of campylobacteriosis in humans in New Zealand. This lineage, not previously identified in New Zealand, was resistant to tetracycline and fluoroquinolones. Genomic analysis revealed divergence into 2 major clades; both clades were associated with human infection, 1 with poultry companies A and B and the other with company C. Accessory genome evolution was associated with a plasmid, phage insertions, and natural transformation. We hypothesize that the tetO gene and a phage were inserted into the chromosome after conjugation, leaving a remnant plasmid that was lost from isolates from company C. The emergence and rapid spread of a resistant clone of C. jejuni in New Zealand, coupled with evolutionary change in the accessory genome, demonstrate the need for ongoing Campylobacter surveillance among poultry and humans.


Assuntos
Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Genoma Bacteriano , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/história , Campylobacter jejuni/classificação , Campylobacter jejuni/isolamento & purificação , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Genômica/métodos , História do Século XXI , Humanos , Tipagem de Sequências Multilocus , Nova Zelândia/epidemiologia , Filogenia , Plasmídeos , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/história , Tetraciclina/farmacologia , Sequenciamento Completo do Genoma
7.
Emerg Infect Dis ; 25(3): 489-500, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789138

RESUMO

Shiga toxin-producing Escherichia coli serogroup O26 is an important public health pathogen. Phylogenetic bacterial lineages in a country can be associated with the level and timing of international imports of live cattle, the main reservoir. We sequenced the genomes of 152 E. coli O26 isolates from New Zealand and compared them with 252 E. coli O26 genomes from 14 other countries. Gene variation among isolates from humans, animals, and food was strongly associated with country of origin and stx toxin profile but not isolation source. Time of origin estimates indicate serogroup O26 sequence type 21 was introduced at least 3 times into New Zealand from the 1920s to the 1980s, whereas nonvirulent O26 sequence type 29 strains were introduced during the early 2000s. New Zealand's remarkably fewer introductions of Shiga toxin-producing Escherichia coli O26 compared with other countries (such as Japan) might be related to patterns of trade in live cattle.


Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Variação Genética , Genoma Bacteriano , Genômica , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Infecções por Escherichia coli/transmissão , Evolução Molecular , Genômica/métodos , Saúde Global , Humanos , Anotação de Sequência Molecular , Nova Zelândia/epidemiologia , Filogenia , Sorogrupo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/isolamento & purificação
8.
Appl Environ Microbiol ; 82(6): 1778-88, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26746715

RESUMO

The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Dípteros/microbiologia , Microbiota , Animais , Quirópteros/parasitologia , Madagáscar
9.
Acta Oecol (Montrouge) ; 72: 98-109, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32288503

RESUMO

The role of birds as reservoirs and disseminators of parasites and pathogens has received much attention over the past several years due to their high vagility. Seabirds are particularly interesting hosts in this respect. In addition to incredible long-distance movements during migration, foraging and prospecting, these birds are long-lived, site faithful and breed in dense aggregations in specific colony locations. These different characteristics can favor both the local maintenance and large-scale dissemination of parasites and pathogens. The Iles Eparses provide breeding and feeding grounds for more than 3 million breeding pairs of seabirds including at least 13 species. Breeding colonies on these islands are relatively undisturbed by human activities and represent natural metapopulations in which seabird population dynamics, movement and dispersal can be studied in relation to that of circulating parasites and pathogens. In this review, we summarize previous knowledge and recently-acquired data on the parasites and pathogens found in association with seabirds of the Iles Eparses. These studies have revealed the presence of a rich diversity of infectious agents (viruses, bacteria and parasites) carried by the birds and/or their local ectoparasites (ticks and louse flies). Many of these agents are widespread and found in other ecosystems confirming a role for seabirds in their large scale dissemination and maintenance. The heterogeneous distribution of parasites and infectious agents among islands and seabird species suggests that relatively independent metacommunities of interacting species may exist within the western Indian Ocean. In this context, we discuss how the patterns and determinants of seabird movements may alter parasite and pathogen circulation. We conclude by outlining key aspects for future research given the baseline data now available and current concerns in eco-epidemiology and biodiversity conservation.

10.
Environ Microbiol ; 17(11): 4280-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25580582

RESUMO

Bats are reservoirs for several zoonotic pathogens of medical importance; however, infection dynamics of pathogens in wild bat populations remain poorly understood. Here, we examine the influence of host crowding and population age structure on pathogen transmission and diversity in bat populations. Focusing on two pathogen taxa of medical importance, Leptospira bacteria and paramyxoviruses, we monitored host population and pathogen shedding dynamics within a maternity colony of the tropical bat species Mormopterus francoismoutoui, endemic to Réunion Island. Our data reveal astonishingly similar infection dynamics for Leptospira and paramyxoviruses, with infection peaks during late pregnancy and 2 months after the initial birth pulse. Furthermore, although co-infection occurs frequently during the peaks of transmission, the patterns do not suggest any interaction between the two pathogens. Partial sequencing reveals a unique bat-specific Leptospira strain contrasting with the co-circulation of four separate paramyxovirus lineages along the whole breeding period. Patterns of infection highlight the importance of host crowding in pathogen transmission and suggest that most bats developed immune response and stop excreting pathogens. Our results support that bat maternity colonies may represent hot spots of transmission for bacterial and viral infectious agents, and highlight how seasonality can be an important determinant of host-parasite interactions and disease emergence.


Assuntos
Quirópteros/microbiologia , Leptospira , Leptospirose/transmissão , Leptospirose/veterinária , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/veterinária , Animais , Quirópteros/virologia , Coinfecção , Leptospirose/microbiologia , Paramyxoviridae/genética , Infecções por Paramyxoviridae/virologia , Dinâmica Populacional , Estações do Ano
11.
J Virol ; 88(15): 8268-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829336

RESUMO

UNLABELLED: The Paramyxoviridae form an increasingly diverse viral family, infecting a wide variety of different hosts. In recent years, they have been linked to disease emergence in many different animal populations and in humans. Bats and rodents have been identified as major animal populations capable of harboring paramyxoviruses, and host shifting between these animals is likely to be an important driving factor in the underlying evolutionary processes that eventually lead to disease emergence. Here, we have studied paramyxovirus circulation within populations of endemic and introduced wild small mammals of the southwestern Indian Ocean region and belonging to four taxonomic orders: Rodentia, Afrosoricida, Soricomorpha, and Chiroptera. We report elevated infection levels as well as widespread paramyxovirus dispersal and frequent host exchange of a newly emerging genus of the Paramyxoviridae, currently referred to as the unclassified morbillivirus-related viruses (UMRVs). In contrast to other genera of the Paramyxoviridae, where bats have been shown to be a key host species, we show that rodents (and, in particular, Rattus rattus) are significant spreaders of UMRVs. We predict that the ecological particularities of the southwestern Indian Ocean, where small mammal species often live in densely packed, multispecies communities, in combination with the increasing invasion of R. rattus and perturbations of endemic animal communities by active anthropological development, will have a major influence on the dynamics of UMRV infection. IMPORTANCE: Identification of the infectious agents that circulate within wild animal reservoirs is essential for several reasons: (i) infectious disease outbreaks often originate from wild fauna; (ii) anthropological expansion increases the risk of contact between human and animal populations and, as a result, the risk of disease emergence; (iii) evaluation of pathogen reservoirs helps in elaborating preventive measures to limit the risk of disease emergence. Many paramyxoviruses for which bats and rodents serve as major reservoirs have demonstrated their potential to cause disease in humans and animals. In the context of the biodiversity hot spot of southwestern Indian Ocean islands and their rich endemic fauna, we show that highly diverse UMRVs exchange between various endemic animal species, and their dissemination likely is facilitated by the introduced Rattus rattus. Hence, many members of the Paramyxoviridae appear well adapted for the study of the viral phylodynamics that may be associated with disease emergence.


Assuntos
Variação Genética , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/classificação , Paramyxoviridae/isolamento & purificação , RNA Viral/genética , Animais , Animais Selvagens , Análise por Conglomerados , Ilhas do Oceano Índico/epidemiologia , Dados de Sequência Molecular , Paramyxoviridae/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
12.
Virol J ; 12: 42, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25888853

RESUMO

BACKGROUND: Bats are amongst the natural reservoirs of many coronaviruses (CoVs) of which some can lead to severe infection in human. African bats are known to harbor a range of pathogens (e.g., Ebola and Marburg viruses) that can infect humans and cause disease outbreaks. A recent study in South Africa isolated a genetic variant closely related to MERS-CoV from an insectivorous bat. Though Madagascar is home to 44 bat species (41 insectivorous and 3 frugivorous) of which 34 are endemic, no data exists concerning the circulation of CoVs in the island's chiropteran fauna. Certain Malagasy bats can be frequently found in close contact with humans and frugivorous bats feed in the same trees where people collect and consume fruits and are hunted and consumed as bush meat. The purpose of our study is to detect and identify CoVs from frugivorous bats in Madagascar to evaluate the risk of human infection from infected bats. METHODS: Frugivorous bats belonging to three species were captured in four different regions of Madagascar. We analyzed fecal and throat swabs to detect the presence of virus through amplification of the RNA-dependent RNA polymerase (RdRp) gene, which is highly conserved in all known coronaviruses. Phylogenetic analyses were performed from positive specimens. RESULTS: From 351 frugivorous bats, we detected 14 coronaviruses from two endemic bats species, of which 13 viruses were identified from Pteropus rufus and one from Eidolon dupreanum, giving an overall prevalence of 4.5%. Phylogenetic analysis revealed that the Malagasy strains belong to the genus Betacoronavirus but form three distinct clusters, which seem to represent previously undescribed genetic lineages. CONCLUSIONS: Our findings suggest that CoVs circulate in frugivorous bats of Madagascar, demonstrating the needs to evaluate spillover risk to human populations especially for individuals that hunt and consume infected bats. Possible dispersal mechanisms as to how coronaviruses arrived on Madagascar are discussed.


Assuntos
Quirópteros/virologia , Infecções por Coronaviridae/veterinária , Coronaviridae/genética , Variação Genética , Animais , Coronaviridae/classificação , Coronaviridae/isolamento & purificação , Genes Virais , Geografia , Madagáscar , Filogenia
13.
Appl Environ Microbiol ; 80(11): 3327-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657860

RESUMO

Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch.


Assuntos
Biota , Aves/parasitologia , Coxiella/classificação , Coxiella/isolamento & purificação , Ixodidae/microbiologia , Rickettsia/classificação , Rickettsia/isolamento & purificação , Animais , Análise por Conglomerados , Coxiella/genética , Dados de Sequência Molecular , Filogenia , Rickettsia/genética , Análise de Sequência de DNA , Clima Tropical
14.
Mol Ecol ; 23(11): 2783-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24784171

RESUMO

Biodiversity hotspots and associated endemism are ideal systems for the study of parasite diversity within host communities. Here, we investigated the ecological and evolutionary forces acting on the diversification of an emerging bacterial pathogen, Leptospira spp., in communities of endemic Malagasy small mammals. We determined the infection rate with pathogenic Leptospira in 20 species of sympatric rodents (subfamily Nesomyinae) and tenrecids (family Tenrecidae) at two eastern humid forest localities. A multilocus genotyping analysis allowed the characterization of bacterial diversity within small mammals and gave insights into their genetic relationships with Leptospira infecting endemic Malagasy bats (family Miniopteridae and Vespertilionidae). We report for the first time the presence of pathogenic Leptospira in Malagasy endemic small mammals, with an overall prevalence of 13%. In addition, these hosts harbour species of Leptospira (L. kirschneri, L. borgpetersenii and L. borgpetersenii group B) which are different from those reported in introduced rats (L. interrogans) on Madagascar. The diversification of Leptospira on Madagascar can be traced millions of years into evolutionary history, resulting in the divergence of endemic lineages and strong host specificity. These observations are discussed in relation to the relative roles of endemic vs. introduced mammal species in the evolution and epidemiology of Leptospira on Madagascar, specifically how biodiversity and biogeographical processes can shape community ecology of an emerging pathogen and lead to its diversification within native animal communities.


Assuntos
Biodiversidade , Doenças Transmissíveis Emergentes/microbiologia , Eulipotyphla/microbiologia , Leptospira/genética , Roedores/microbiologia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Evolução Molecular , Variação Genética , Genótipo , Leptospira/classificação , Madagáscar , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Seleção Genética
15.
PLoS Comput Biol ; 9(10): e1003276, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204227

RESUMO

Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species.


Assuntos
Movimento Celular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Rhodobacter sphaeroides/fisiologia , Análise de Célula Única/métodos , Simulação por Computador , Microscopia de Vídeo , Reprodutibilidade dos Testes
16.
PLoS Negl Trop Dis ; 18(5): e0012184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768248

RESUMO

BACKGROUND: Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE: DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.


Assuntos
Vírus da Dengue , Dengue , Variação Genética , Genótipo , Filogenia , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Humanos , Dengue/epidemiologia , Dengue/virologia , Reunião/epidemiologia , Epidemiologia Molecular , Sorogrupo , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala
17.
Interv Neuroradiol ; : 15910199231207409, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828762

RESUMO

BACKGROUND: The appropriate choice of perioperative sedation during endovascular thrombectomy for ischemic stroke is unknown. Few studies have evaluated the role of nursing-administered conscious sedation supervised by a trained interventionalist. OBJECTIVE: To compare the safety and efficacy of endovascular thrombectomy for ischemic stroke performed with nursing-administered conscious sedation supervised by a trained interventionalist with monitored anesthesia care supervised by an anesthesiologist. METHODS: A retrospective review of a prospectively collected stroke registry was performed. The primary outcome was functional independence at 90 days, defined as a modified Rankin score of 0-2. Propensity score matching was performed to control for known confounders including patient comorbidities, access type, and direct-to-suite transfers. RESULTS: A total of 355 patients underwent endovascular thrombectomy for large vessel occlusion between 2018 and 2022. Thirty five patients were excluded as they arrived at the endovascular suite intubated. Three hundred and twenty patients were included in our study, 155 who underwent endovascular thrombectomy with nursing-administered conscious sedation and 165 who underwent endovascular thrombectomy with monitored anesthesia care. After propensity score matching, there were 111 patients in each group. There was no difference in modified Rankin score 0-2 at 90 days (26.1% vs 35.1%, p = 0.190). Patients undergoing monitored anesthesia care received significantly more vasoactive medications (23.4% vs 49.5%, p < 0.001) and had a lower intraoperative minimum systolic blood pressure (134 vs 123 mmHg, p < 0.046). There was no difference in procedural efficacy, safety, intubation rates, and postoperative complications. CONCLUSION: Perioperative sedation with nursing-administered conscious sedation may be safe and effective in patients undergoing endovascular thrombectomy for ischemic stroke.

18.
PLoS Negl Trop Dis ; 17(9): e0011624, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672535

RESUMO

There has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ≥ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.


Assuntos
Animais Selvagens , Leptospira , Cães , Humanos , Animais , Camundongos , Ratos , Bovinos , Ovinos , Gado , Estudos Transversais , Leptospira/genética , Nova Zelândia/epidemiologia , Ouriços , Estudos Soroepidemiológicos , Animais Domésticos
19.
JMIR Res Protoc ; 12: e47900, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289491

RESUMO

BACKGROUND: In Aotearoa New Zealand, 90% of patients with notified leptospirosis (a zoonotic bacterial disease) have been men working in agricultural industries. However, since 2008, the epidemiology of notified cases has been gradually changing, that is, more women are affected; there are more cases associated with occupations traditionally not considered high risk in New Zealand; infecting serovars have changed; and many patients experience symptoms long after infection. We hypothesized that there is a shift in leptospirosis transmission patterns with substantial burden on affected patients and their families. OBJECTIVE: In this paper, we aimed to describe the protocols used to conduct a nationwide case-control study to update leptospirosis risk factors and follow-up studies to assess the burden and sources of leptospirosis in New Zealand. METHODS: This study used a mixed methods approach, comprising a case-control study and 4 substudies that involved cases only. Cases were recruited nationwide, and controls were frequency matched by sex and rurality. All participants were administered a case-control questionnaire (study 1), with cases being interviewed again at least 6 months after the initial survey (study 2). A subset of cases from two high-risk populations, that is, farmers and abattoir workers, were further engaged in a semistructured interview (study 3). Some cases with regular animal exposure had their in-contact animals (livestock for blood and urine and wildlife for kidney) and environment (soil, mud, and water) sampled (study 4). Patients from selected health clinics suspected of leptospirosis also had blood and urine samples collected (study 5). In studies 4 and 5, blood samples were tested using the microscopic agglutination test to test for antibody titers against Leptospira serovars Hardjo type bovis, Ballum, Tarassovi, Pomona, and Copenhageni. Blood, urine, and environmental samples were also tested for pathogenic Leptospira DNA using polymerase chain reaction. RESULTS: Participants were recruited between July 22, 2019, and January 31, 2022, and data collection for the study has concluded. In total, 95 cases (July 25, 2019, to April 13, 2022) and 300 controls (October 19, 2019, to January 26, 2022) were interviewed for the case-control study; 91 cases participated in the follow-up interviews (July 9, 2020, to October 25, 2022); 13 cases participated in the semistructured interviews (January 26, 2021, to January 19, 2022); and 4 cases had their in-contact animals and environments sampled (October 28, 2020, and July 29, 2021). Data analysis for study 3 has concluded and 2 manuscripts have been drafted for review. Results of the other studies are being analyzed and the specific results of each study will be published as individual manuscripts.. CONCLUSIONS: The methods used in this study may provide a basis for future epidemiological studies of infectious diseases. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/47900.

20.
Nat Commun ; 14(1): 6854, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891177

RESUMO

The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Animais Selvagens , Mamíferos , Fatores de Risco , Gado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA